

Discrete Optimization (Spring 2025)

Assignment 2

- 1) Consider the unit ball $B_n = \{x \in \mathbb{R}^n : \|x\|_2 \leq 1\}$. Show that the set of extreme points of B is the sphere $S^{(n-1)} = \{x \in \mathbb{R}^n : \|x\|_2 = 1\}$.
- 2) A *line* is a set $L = \{x \cdot d + t : x \in \mathbb{R}\} \subseteq \mathbb{R}^n$ where $d, t \in \mathbb{R}^n$ $d \neq 0$. Show the following.
 A non-empty polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b\} \subseteq \mathbb{R}^n$ contains a line if and only if $\text{rank}(A) < n$.
- 3) Two different vertices $v_1 \neq v_2$ of a polyhedron $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ are called *adjacent*, if there exists a subsystem $A'x \leq b'$ of $Ax \leq b$ with
 - i) $A'v_1 = b'$ and $A'v_2 = b'$ and
 - ii) $\text{rank}(A') = (n - 1)$.

Show that there exists a valid inequality $c^T x \leq \delta$ of P with

$$(P \cap \{x \in \mathbb{R}^n : c^T x = \delta\}) = \text{conv}\{v_1, v_2\}.$$

- 4) Let $\{C_i\}_{i \in I}$ be a family of convex subsets of \mathbb{R}^n . Show that the intersection $\bigcap_{i \in I} C_i$ is convex.
- 5) Show that the set of feasible solutions of a linear program is convex.
- 6) Let

$$P = \{x : Ax \leq b\}.$$

Let $A^=$ denote the set of rows of A such that for all $x \in P$, $A^=x = b^=$ such that the rows indexed by $A^=$ are satisfied with equality in P . Prove that

$$\text{affine-hull}(P) = \{x \in \mathbb{R}^n : A^=x = b^=\} = \{x \in \mathbb{R}^n : A^=x \leq b^=\}.$$