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1) Consider the unit ball Bn = {x ∈ Rn : ∥x∥2 ⩽ 1}. Show that the set of extreme points of B is
the sphere S(n−1) = {x ∈ Rn : ∥x∥2 = 1}.

Solution:
First we prove that for any extreme point x∗ of Bn, we have ∥x∗∥2 = 1. Let {x∗} = Bn∩{αTx =
β}. Suppose that ∥x∗∥2 < 1. Take d ̸= 0 such that αTd = 0. For ε > 0, consider the point
x̄ = x∗ + εd. Obviously we have αT x̄ = β. Since ∥x∗∥2 < 1, by taking ε to be small enough,
we can make sure that ∥x̄∥2 ⩽ 1, so x̄ ∈ Bn. Therefore x̄ ̸= x∗ but x̄ ∈ Bn ∩ {αTx = β}, a
contradiction.

Next we prove that for any x∗ ∈ Bn such that ∥x∗∥2 = 1, x∗ is an extreme point of Bn. Consider
the hyperplane (x∗)Tx = 1, which is the tangent plane of Sn−1 at x∗. Note that for any x ∈ Bn,
we have (x∗)Tx ⩽ 1 so it is a supporting inequality ofBn. Also we have {x∗} ⊆ Bn∩{(x∗)Tx = 1}.
For any y ∈ Bn ∩ {(x∗)Tx = 1}, let θ ∈ [0, π) be the angle between x∗ and y, we have

1 = (x∗)T y = ∥x∗∥2∥y∥2 cos θ ⩽ 1 ⇒ ∥y∥2 = 1, θ = 0 ⇒ y = x∗.

Therefore {x∗} = Bn ∩ {(x∗)Tx = 1}, so x∗ is an extreme point of Bn.

2) A line is a set L = {x · d+ t : x ∈ R} ⊆ Rn where d, t ∈ Rn d ̸= 0. Show the following.

A non-empty polyhedron P = {x ∈ Rn : Ax ⩽ b} ⊆ Rn contains a line if and only if rank(A) < n.

Solution:
We start by showing P contains a line =⇒ rank(A) < n.

Let d ·x+t denote the line contained in P . As P contains this line, for any x ∈ R, A(d ·x+t) ⩽ b.
We claim that Ad = 0⃗ in this case. Assume that Ad ̸= 0 and let i be any component of Ad that
is nonzero. Let the value of this component be equal to α ∈ R>0 without loss of generality (an
identical argument would apply for α negative). Then

[A(d · x+ t)]i = x[Ad]i + [At]i

= xα+ [At]i

for any choice of x ∈ R. In particular, choose x := bi−[At]i+1
α which is possible since α ̸= 0. Then

[A(d · x+ t)]i = x[Ad]i + [At]i

= xα+ [At]i

= bi − [At]i + 1 + [At]i

> bi.

But this contradicts the fact that A(d · x + t) ⩽ b and in particular [A(d · x + t)]i ⩽ bi for
any x ∈ R. Thus it must be that Ad = 0 such that d is a nontrivial kernel element of A and
rank(A) < n.

We then show that if rank(A) < n then P contains a line.



As rank(A) < n, there exists a non-trivial kernel element of A, a vector v ̸= 0⃗ such that Av = 0.
Then let x⃗ be any feasible vector of the polyhedron P , that is x is such that Ax ⩽ b. Note that
for any t ∈ R, A(x+ t · v) = Ax+ tAv = Ax+ {⃗0} ⩽ b such that the vector x+ t · v is contained
in P for any t ∈ R. This forms the line contained in P .

3) Two different vertices v1 ̸= v2 of a polyhedron P = {x ∈ Rn : Ax ⩽ b} are called adjacent, if
there exists a subsystem A′x ⩽ b′ of Ax ⩽ b with

i) A′v1 = b′ and A′v2 = b′ and

ii) rank(A′) = (n− 1).

Show that there exists a valid inequality cTx ⩽ δ of P with(
P ∩ {x ∈ Rn : cTx = δ}

)
= conv{v1, v2}.

Solution:
Let A′ be the rank n − 1 submatrix such that A′v1 = b′, A′v2 = b′. Let cT = 1⃗TA′ be the
vector obtained by summing the rows of A′ and let δ = 1⃗T b′ the value obtained by summing
the components of b′. As A′ can be chosen as (n− 1) linearly independent rows, the vector c⃗ is
nonzero.

Now, we claim that
(P ∩ {x ∈ Rn : cTx = δ}) = conv{v1, v2}.

Let x be any convex combination of v1, v2 such that x = λv1 + (1− λ)v2. Notice that x ∈ P as
v1, v2 ∈ P and P is convex. Next, note that

cTx = cT (λv1 + (1− λ)v2)

= (⃗1TA′)(λv1 + (1− λ)v2)

= λ(⃗1TA′v1) + (1− λ)(⃗1TA′v2)

= λ(⃗1T b′) + (1− λ)(⃗1T b′)

= λδ + (1− λ)δ

= δ.

This shows that x ∈ (P ∩ {x ∈ Rn : cTx = δ}) so that conv{v1, v2} ⊆ (P ∩ {x ∈ Rn : cTx = δ}).
Next, let x ∈ (P ∩ {x ∈ Rn : cTx = δ}) any such vector, and we show that x ∈ conv{v1, v2}.
As x satisfies cTx = δ, we claim that A′x = b′. Assume this were not the case such that there is
a row i with A′

ix < b′i. Then cTx = 1⃗TA′x < 1⃗T b′ = δ. But this is impossible as cTx = δ. Thus

A′x = b′. As v1, v2 are vertices, there exists some row a(1) of A such that

(
A′

a(1)

)
v1 =

(
b′

b(1)

)
and rank

(
A′

a(1)

)
= n. Let the matrix

(
A′

a(1)

)
be denoted as A(1).

Then note that A(1)x =

(
b′

αx

)
for some αx ⩽ b(1). Likewise, A(1)v2 =

(
b′

αv2

)
for αv2 ⩽ b(1).



Assume that αv2 ⩽ αx. Then letting λ =
αx−αv2

b(1)−αv2

where λ ∈ [0, 1] as αv2 ⩽ αx ⩽ b(1). Then

λv1 + (1− λ)v2 = λA(1)−1
(

b′

b(1)

)
+ (1− λ)A(1)−1

(
b′

αv2

)
= A(1)−1 ·

(
b′

λb(1) + (1− λ)αv2

)
= A(1)−1 ·

(
b′

αx−αv2

b(1)−αv2

b(1) +
(
1− αx−αv2

b(1)−αv2

)
αv2

)

= A(1)−1 ·
(
b′

αx

)
= x

so that x is indeed a convex combination of v1 and v2. Finally, note that if instead αx ⩽ αv2

then v2 is a convex combination of x and v1 which is impossible as v2 is a vertex.

So we have shown that (P ∩ {x ∈ Rn : cTx = δ}) ⊆ conv{v1, v2} such that altogether

(P ∩ {x ∈ Rn : cTx = δ}) = conv{v1, v2}.

4) Let {Ci}i∈I be a family of convex subsets of Rn. Show that the intersection
⋂

i∈I Ci is convex.

Solution:
Let x, y be two vectors in the set

⋂
i∈I Ci. Then x, y ∈ Ci for each i ∈ I. Then λx+(1−λ)y ∈ Ci

for each i ∈ I by convexity of Ci. But this shows that λx + (1 − λ)y ∈
⋂

i∈I Ci such that the
intersection is also convex.

5) Show that the set of feasible solutions of a linear program is convex.

Solution:
Let the feasible region of the LP be defined by some {x : Ax ⩽ b} for a matrix A and vector b.
Let x, y be any two feasible solutions of the LP. Then

A(λx+ (1− λ)y) = λAx+ (1− λ)Ay

⩽ λb+ (1− λ)b

= b

such that the convex combination is also in the feasible region.

6) Let
P = {x : Ax ⩽ b}.

Let A= denote the set of rows of A such that for all x ∈ P , A=x = b= such that the rows indexed
by A= are satisfied with equality in P . Prove that

affine-hull(P ) = {x ∈ Rn : A=x = b=} = {x ∈ Rn : A=x ⩽ b=}.

Solution:
We prove this by proving three containments.



(a) affine-hull(P ) ⊆ {x : A=x = b=}.
By definition we have that P ⊆ {x : A=x = b=}. Let x ∈ affine-hull(P ) be any vector.
Then x = λ1x

1 + . . .+ λtx
t for some x1, . . . , xt ∈ P, λ1, ..., λt ∈ R,

∑t
i=1 λi = 1. Then

A=x = λ1A
=x1 + . . . λtA

=xt

=
t∑

i=1

λib
=

= b=.

Thus x ∈ {x : A=x = b=} and the containment follows.

(b) {x : A=x = b=} ⊆ {x : A=x ⩽ b=}. This containment is immediate by the definition of A=.

(c) {x : A=x ⩽ b=} ⊆ affine-hull(P ).

Let x be a vector satisfying A=x ⩽ b=. Denote the submatrix of rows not in A= by A<.
We claim that there exists a point x′ ∈ P such that A=x′ = b= and A<x′ < b< (all the
inequalities are strict). To prove the claim, denote all the inequalitiess of A<x ⩽ b< as
aT1 x ⩽ b1, . . . , a

T
k x ⩽ bk. Then for each i = 1, . . . , k, there exists a point xi ∈ P such that

aTi xi < bi by definition of A=. Take x′ = 1
k

∑k
i=1 xi. This finishes the proof of the claim.

If x ∈ P then x ∈ affine-hull(P ), we are done. Otherwise if x /∈ P , consider x′′ = x′+ε(x−x′)
where ε ⩾ 0. First it’s easy to check that A=x′′ ⩽ b=. Also by taking ε to be small
enough, we can make sure that A<x′′ ⩽ b<. Therefore x′′ ∈ P . Consider the line L =
affine-hull({x′, x′′}) such that

affine-hull(P ) ⊇ affine-hull({x′, x′′}) ∋ x

which completes the proof.


