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Let A € Z™*™ be a matrix of rank n and let b € Z™. Show the following: If P = {x € R™: Az <
b} is full-dimensional, then there exist n + 1 vertices of P that are affinely independent.

Solution:

Note that P is a polytope and thus the convex hull of its vertices. We will consecutively choose
vertices of P while ensuring that each newly selected vertex is affinely independent to the pre-
vious ones. Initially, we can choose the first vertex arbitrarily, as every single point is affinely
independent. Now, assume that we have already chosen vertices vy, ..., vg. Out of the remaining
vertices we pick as vi41 an arbitrary vertex of P such that vy, ..., vk, vg+1 is affinely independent.
We continue this process until k is such that all the remaining vertices are affinely dependent
with v1,...,v;. This means that all the vertices and thus their convex hull P are contained in
the k£ — 1-dimensional affine subspace defined by vy, ..., v;. Since P is full-dimensional, this can
only happen for k = n + 1. At that point we are done.

Given vectors ¢ € R™ and a € R", and a symmetric positive definite matrix A € R™*", provide
a formula for the ellipsoid containing the half-ball H = {x € R" :|| z ||2< 1,cTz > 0}.

Solution:
For convenience, we use a different representation of the ellipsoid than before. Here, we define
it as

E(Aa)={zeR": (z —a)TA (z —a) <1}

where A € R"™" is a positive definite (PD) matrix, and a € R" is the center. We remark
that for every PD matrix A there exists a unique PD matrix, denote it with A'/2, such that

A= AYV2AY2 Thus, E(A,a) = {z € R" : (z — )T (AY2) 1 (AY2) (- a) < 1}.

Denote with e; € R™ the unit vector with the first coordinate equal to 1, and with I, the n x n
identity matrix. When rewriting the ellipsoid, we obtain that the half-ball {x € R" :|| = [|<
1,ef'1z > 0} is contained in the ellipsoid E(A(e1),a(e1)), where

n? 2 T 1
Alel) = 1 I, — Siee and a(ey) = TR

Without loss of generality we could assume that || ¢ ||= 1. Similarly to the proof of the Half-ball
lemma in the lecture notes, one can verify that e; can be replaced with ¢ in the above formulas.
Le., the ellipsoid F(A(c),a(c)) contains the half-ball H given in the problem statement.

Let n € N and consider the space R™. An element 2 € R" be interpreted as a matrix A € R™*"
in the obvious way as

a’:l 1'2 “ e xn
Tn+1 Tn+2 o Ton

A pr—
Tp2—n+1 Tp2—n42 "7 Tp?2

Let X C R™ be the subset of R consisting of symmetric and positive semidefinite matrices.
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i) Show that X is convex.
ii) Let A € R™" A ¢ X. Describe a hyperplane a’ 2 = (3 that separates A from X.

Solution:

i) Let z,y € X and let their matrix representations be A, A,. Then for any A € [0, 1], take
z=MAx+ (1 —X)y. Then A, = XA, + (1 — X\)A, and for any indeces i, j,

Alig] = Me[ig] + (1 = M) Ay[ig] = A [ji] + (1 — M) Ay[ji] = A.[ji]

where the second equality follows from symmetry of A, and A,. Hence, A, is symmetric.
Moreover, consider any vector v € R"™, then

vl Aw = vl (A + (1= M)Ay v = Wl Agv+ (1 — )\)vyAv >0+0=0

where the inequality follows from A, A, being PSD. Then A, is also PSD and therefore z
is in X. Thus X is convex.

ii) Let a be the vector representation of A. Since A ¢ X, A is either not symmetric or not
PSD. In the case where A is not symmetric, there exists indeces 4, j such that A[ij] > A[ji]
without loss of generality. Notice that in a, A[ij] corresponds to the component agi—1).
Then letting the vector « be defined by

n+j-

0 ifkg{(i—-1)-n+5(—-1) - -n+i}
ap =141 ifk=(G—-1)-n+j
1 ifk=(—-1)-n—+i

Then a”a > 0 by the assumption A[ij] > A[ji], but a’z = 0 for all z € X as these vectors
are symmetric. Thus o’ 2 = 0 is a separating hyperplane.

Now consider the case where A is not PSD. Then there exists some vector v € R™ such that

n n
vl Av < 0. Note that v Av = Z ZviA[ij]vj. Recall that A[ij] = a(;—1).n4;- Then let a
i=1 j=1
be the vector where a;_1).,4; = v;v; for each i € [n], j € [n]. Notice then that a € R™ and
ala =vT Av < 0. Moreover, for any « € X,a’z = vT A,v > 0 by positive semidefiniteness.

Then o’z = 0 is a separating hyperplane for A.

Give an example for a linear program with no maximum (in other words, unbounded linear
program) such that the corresponding integer program is not unbounded. Solution:

An example is to take the feasible region as a line through the origin that does not contain
any integer point except for the origin (for example the line spanned by (1,v/2)). Then let the
objective maximize the x-coordinate of a point on this line. As the line is unbounded, so is the
LP but the integer program only contains the point (0,0) which has bounded objective value.

Let £ C R3 be the ellipsoid E = {(z,y,2) : 2% + % + % < 1}. Let H' be the half-space
H* ={(z,y,2) : * + y+ 2z > 0}. Find an ellipsoid E’ such that £’ > EN H' and Vol(E') <
Vol(E)e™t/(23+1),

Solution:
The linear transformation T'(z,y,z) = (z,y/2,2/3) takes the ellipsoid E to the unit ball B.



Notice that T takes HT to the half-space G = {x + 2y + 32z > 0}. Now we find a linear
transformation R that will rotate the space about the origin such that B will remain fixed but
G+ will go to the half space {x > 0}. One way to do this is to take the vector u = 1/v/14(1,2,3)
and complete it to an orthonormal basis: take also the vector v = 1/v/5(—2,1,0) and the vector
w perpendicular to both w and v (you need to find it). Then consider the linear transformation
R that takes u,v,w to (1,0,0),(0,1,0), and (0,0,1). This is the inverse of the matrix whose
columns are u, v, w. The linear transformation R(T'()) takes ENH™ to the half ball BN{z > 0}.
By the half-ball theorem, then the ellipsoid F = {8 (2 — 1)? + 8y + 222 < 1} contains the half
ball BN {z > 0} and we also have Vol(F) < e~ V/CB+DVol(B). If we now apply T~ (R())
on F we get the desired ellipsoid E’. One can get from here the algebraic description of E’.
Technichally, we need to replace z,y, and z in the algebraic discription of F' by R(T(z,y, 2)).

(Bonus Question) Suppose we are given an oracle that tells us whether a polyhedron defined
by Az < b is full-dimensional. Based on this oracle, this exercise develops a method to find an
inequality a’z < B of Az < b that is satisfied by every feasible solution with equality in the case
where P = {z € R": Az < b} is not full-dimensional.

First we split Az < b into two systems Ajxz < b; and Asx < by, where Ajz < by are the
inequalities that are satisfied with equality by every feasible x* € R™. The system Ajx < by is
called the implicit equalities of Ax < b.

i) If Az < b is feasible, then there exists a feasible solution z* such that Asz* < by holds.
ii) Argue that the implicit equalities of A1z < by are Ajx < b;.

iii) Suppose that Az < b is not full-dimensional and that A’z < b’ is full-dimensional, where
A’z < b stems from Az < b by deleting one inequality a” 2 < 8. Show that a’2 < 8 is an
implicit equality of Az < b.

iv) If a”x < B is an implicit equality of Az < b, then describe a feasibility problem in R"~!
that is equivalent to the one of Az < b.



