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1) Let A ∈ Zm×n be a matrix of rank n and let b ∈ Zm. Show the following: If P = {x ∈ Rn : Ax ⩽
b} is full-dimensional, then there exist n+ 1 vertices of P that are affinely independent.

Solution:
Note that P is a polytope and thus the convex hull of its vertices. We will consecutively choose
vertices of P while ensuring that each newly selected vertex is affinely independent to the pre-
vious ones. Initially, we can choose the first vertex arbitrarily, as every single point is affinely
independent. Now, assume that we have already chosen vertices v1, ..., vk. Out of the remaining
vertices we pick as vk+1 an arbitrary vertex of P such that v1, ..., vk, vk+1 is affinely independent.
We continue this process until k is such that all the remaining vertices are affinely dependent
with v1, ..., vk. This means that all the vertices and thus their convex hull P are contained in
the k − 1-dimensional affine subspace defined by v1, ..., vk. Since P is full-dimensional, this can
only happen for k = n+ 1. At that point we are done.

2) Given vectors c ∈ Rn and a ∈ Rn, and a symmetric positive definite matrix A ∈ Rn×n, provide
a formula for the ellipsoid containing the half-ball H = {x ∈ Rn :∥ x ∥2⩽ 1, cTx ⩾ 0}.

Solution:
For convenience, we use a different representation of the ellipsoid than before. Here, we define
it as

E(A, a) = {x ∈ Rn : (x− a)TA−1(x− a) ⩽ 1}

where A ∈ Rn×n is a positive definite (PD) matrix, and a ∈ Rn is the center. We remark
that for every PD matrix A there exists a unique PD matrix, denote it with A1/2, such that

A = A1/2A1/2. Thus, E(A, a) = {x ∈ Rn : (x− a)T (A1/2)
−1

(A1/2)
−1

(x− a) ⩽ 1}.
Denote with e1 ∈ Rn the unit vector with the first coordinate equal to 1, and with In the n× n
identity matrix. When rewriting the ellipsoid, we obtain that the half-ball {x ∈ Rn :∥ x ∥⩽
1, eT 1x ⩾ 0} is contained in the ellipsoid E(A(e1), a(e1)), where

A(e1) =
n2

n2 − 1

(
In − 2

n+ 1
e1e

T
1

)
and a(e1) =

1

n+ 1
e1.

Without loss of generality we could assume that ∥ c ∥= 1. Similarly to the proof of the Half-ball
lemma in the lecture notes, one can verify that e1 can be replaced with c in the above formulas.
I.e., the ellipsoid E(A(c), a(c)) contains the half-ball H given in the problem statement.

3) Let n ∈ N and consider the space Rn2
. An element x ∈ Rn2

be interpreted as a matrix A ∈ Rn×n

in the obvious way as

A =


x1 x2 · · · xn

xn+1 xn+2 · · · x2n
...

xn2−n+1 xn2−n+2 · · · xn2


Let X ⊆ Rn2

be the subset of Rn2
consisting of symmetric and positive semidefinite matrices.



i) Show that X is convex.

ii) Let A ∈ Rn×n, A ̸∈ X. Describe a hyperplane aTx = β that separates A from X.

Solution:

i) Let x, y ∈ X and let their matrix representations be Ax, Ay. Then for any λ ∈ [0, 1], take
z = λx+ (1− λ)y. Then Az = λAx + (1− λ)Ay and for any indeces i, j,

Az[ij] = λAx[ij] + (1− λ)Ay[ij] = λAx[ji] + (1− λ)Ay[ji] = Az[ji]

where the second equality follows from symmetry of Ax and Ay. Hence, Az is symmetric.
Moreover, consider any vector v ∈ Rn, then

vTAzv = vT (λAx + (1− λ)Ay)v = λvTAxv + (1− λ)vAy v ⩾ 0 + 0 = 0

where the inequality follows from Ax, Ay being PSD. Then Az is also PSD and therefore z
is in X. Thus X is convex.

ii) Let a be the vector representation of A. Since A /∈ X, A is either not symmetric or not
PSD. In the case where A is not symmetric, there exists indeces i, j such that A[ij] > A[ji]
without loss of generality. Notice that in a, A[ij] corresponds to the component a(i−1)·n+j .
Then letting the vector α be defined by

αk =


0 if k /∈ {(i− 1) · n+ j, (j − 1) · n+ i}
1 if k = (i− 1) · n+ j

−1 if k = (j − 1) · n+ i

.

Then αTa > 0 by the assumption A[ij] > A[ji], but αTx = 0 for all x ∈ X as these vectors
are symmetric. Thus αTx = 0 is a separating hyperplane.

Now consider the case where A is not PSD. Then there exists some vector v ∈ Rn such that

vTAv < 0. Note that vTAv =

n∑
i=1

n∑
j=1

viA[ij]vj . Recall that A[ij] = a(i−1)·n+j . Then let α

be the vector where α(i−1)·n+j = vivj for each i ∈ [n], j ∈ [n]. Notice then that α ∈ Rn2
and

αTa = vTAv < 0. Moreover, for any x ∈ X,αTx = vTAxv ⩾ 0 by positive semidefiniteness.
Then αTx = 0 is a separating hyperplane for A.

4) Give an example for a linear program with no maximum (in other words, unbounded linear
program) such that the corresponding integer program is not unbounded. Solution:

An example is to take the feasible region as a line through the origin that does not contain
any integer point except for the origin (for example the line spanned by (1,

√
2)). Then let the

objective maximize the x-coordinate of a point on this line. As the line is unbounded, so is the
LP but the integer program only contains the point (0, 0) which has bounded objective value.

5) Let E ⊂ R3 be the ellipsoid E = {(x, y, z) : x2 + y2

4 + z2

9 ⩽ 1}. Let H+ be the half-space
H+ = {(x, y, z) : x + y + z ⩾ 0}. Find an ellipsoid E′ such that E′ ⊃ E ∩H+ and V ol(E′) ⩽
V ol(E)e−1/(2(3+1)).

Solution:
The linear transformation T (x, y, z) = (x, y/2, z/3) takes the ellipsoid E to the unit ball B.



Notice that T takes H+ to the half-space G+ = {x + 2y + 3z ⩾ 0}. Now we find a linear
transformation R that will rotate the space about the origin such that B will remain fixed but
G+ will go to the half space {x ⩾ 0}. One way to do this is to take the vector u = 1/

√
14(1, 2, 3)

and complete it to an orthonormal basis: take also the vector v = 1/
√
5(−2, 1, 0) and the vector

w perpendicular to both u and v (you need to find it). Then consider the linear transformation
R that takes u, v, w to (1, 0, 0), (0, 1, 0), and (0, 0, 1). This is the inverse of the matrix whose
columns are u, v, w. The linear transformation R(T ()) takes E∩H+ to the half ball B∩{x ⩾ 0}.
By the half-ball theorem, then the ellipsoid F = {16

9 (x− 1
4)

2 + 8
9y

2 + 8
9z

2 ⩽ 1} contains the half

ball B ∩ {x ⩾ 0} and we also have V ol(F ) ⩽ e−1/(2(3+1))V ol(B). If we now apply T−1(R−1())
on F we get the desired ellipsoid E′. One can get from here the algebraic description of E′.
Technichally, we need to replace x, y, and z in the algebraic discription of F by R(T (x, y, z)).

6) (Bonus Question) Suppose we are given an oracle that tells us whether a polyhedron defined
by Ax ⩽ b is full-dimensional. Based on this oracle, this exercise develops a method to find an
inequality aTx ⩽ β of Ax ⩽ b that is satisfied by every feasible solution with equality in the case
where P = {x ∈ Rn : Ax ⩽ b} is not full-dimensional.

First we split Ax ⩽ b into two systems A1x ⩽ b1 and A2x ⩽ b2, where A1x ⩽ b1 are the
inequalities that are satisfied with equality by every feasible x∗ ∈ Rn. The system A1x ⩽ b1 is
called the implicit equalities of Ax ⩽ b.

i) If Ax ⩽ b is feasible, then there exists a feasible solution x∗ such that A2x
∗ < b2 holds.

ii) Argue that the implicit equalities of A1x ⩽ b1 are A1x ⩽ b1.

iii) Suppose that Ax ⩽ b is not full-dimensional and that A′x ⩽ b′ is full-dimensional, where
A′x ⩽ b′ stems from Ax ⩽ b by deleting one inequality aTx ⩽ β. Show that aTx ⩽ β is an
implicit equality of Ax ⩽ b.

iv) If aTx ⩽ β is an implicit equality of Ax ⩽ b, then describe a feasibility problem in Rn−1

that is equivalent to the one of Ax ⩽ b.


