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1) Show that the unit simplex ∆ = conv{0, e1, . . . , en} ⊂ Rn has volume 1
n! .

Solution:
We will solve the problem using induction on n. Starting with n = 2, we have that ∆ =
∆((0, 0), (1, 0), (0, 1)) = conv{0, e1, e2}, where ∆((0, 0), (1, 0), (0, 1)) means the triangle between
the three vertices (0, 0), (1, 0)and(0, 1). It is clear that the volume of ∆ is equal to 1/2. For the
inductive step we use

voln(∆n) =

∫ 1

0
voln−1(x ·∆n−1)dx

=

∫ 1

0
xn−1voln−1(∆n−1)dx

=
1

(n− 1)!

∫ 1

0
xn−1dx

=
1

n!

In this equation, we have use the result that, voln(λK) = λnvoln(K), for any K ⊂ Rn. We also
have used the induction hypothesis in the third equation. Therefore, we get the desired result.

2) Let P = {x ∈ Rn : Ax ⩽ b} be a full dimensional 0/1 polytope and c ∈ Zn. We will show how
we can use the ellipsoid method to solve the optimization problem {max cTx : x ∈ P}. Define
z∗ := max{cTx : x ∈ P} and cmax := max{|ci| : 1 ⩽ i ⩽ n}.

i) Show that P is contained inside the ball centered at 1/2 · 1⃗ with radius
√
n/2 and give an

upper bound on the volume of this ball.

ii) Show that P contains a simplex of volume 1/n!.

iii) Scale down this simplex to obtain another simplex ∆′ such that P ∩(cTx ⩾ β−1/2) contains
∆′ when nonempty. What is the volume of ∆′?

iv) Show that the ellipsoid method requires O(n3 log(n)cmax) iterations to decide whether P ∩
(c⊤x ⩾ β− 1/2) = ∅ for some integer β, i.e., use parts (i) and (iii) as suitable initial volume
Iinit and stopping volume L for the ellipsoid method. The ellipsoid method then terminates
in O(n log(vol(Iinit)/L)).

v) Show that we can use binary search to find z∗ with log(ncmax) calls to the ellipsoid method.

vi) Show how you can find an optimal solution x∗ such that cTx∗ = z∗ in polynomial time.

Solution:

i) Note that all 0/1 polytopes are contained inside the ball centered at 1/2 · 1⃗ with radius√
n/2. We can upper bound the volume of this ball by

√
n
n
.



ii) Since P is full dimensional it contains a simplex ∆ = conv{x0, x1, . . . , xn} of volume 1/n!.

iii) Let P ′ := P ∩ (cTx ⩾ β − 1/2) and suppose that P ′ is nonempty. Take x0 ∈ P ′ ∩ {0, 1}n.
We define α = 1

2ncmax
and consider the simplex ∆′ = conv{z0, z1, . . . , zn} where zi =

x0 +α(xi − x0). To see that ∆′ is contained in P ′ we just need to check that each zi is in P
and satisfies cT zi ⩾ β − 1/2. Indeed, we have cT zi = cTx0 + αcT (xi − x0) ⩾ β − 1/2. Then
we obtain that

vol(P ′) ⩾ vol(∆′) ⩾
1

n!

(
1

2ncmax

)n

.

iv) Observe that P ∩ (cTx ⩾ β) = ∅ iff P ′ := P ∩ (cTx ⩾ β − 1/2) = ∅, since the vertices of
P are integral. So we want to lower bound the volume of P ′. Let x0 be an integral vertex
in P ′. The idea is to scale this simplex so that it is contained in P ′. Setting L = vol(∆′)
and using the fact that the ellipsoid method terminates in O(n log(vol(Iinit)/L)) gives us
the correct bound.

v) We use the fact that the value of cTx lies between −ncmax and ncmax for any vertex x of P
to conclude that z∗ must also lie within these bounds. Using binary search on this interval
of integer points takes log(ncmax) steps.

vi) The algorithm described in (iv) and (v) gives us the optimal value z∗ but also a point y ∈ P
such that z∗ ⩾ cT y ⩾ z∗ − 1/2. We now take this point and project it onto the hyperplane
cTx = z∗. Let y′ be the projection. If y′ ∈ P then we are done, otherwise we find a point on
the line segment yy′ that intersects a facet of P . We have now reduced the dimension of our
problem by one and can proceed by once again projecting this new point onto the hyperplane
cTx = z∗. Continuing in this way we will arrive at an optimal solution in polynomial time.

3) Consider the complete graph Gn with 3 vertices, i.e., G = ({1, 2, 3},
(
3
2

)
). Is the polyhedron of

the linear programming relaxation of the vertex-cover integer program integral?

Solution:
The vertex-cover IP for the G3 looks as follows:

min w1x1+w2x2 + w3x3

x1 + x2 ⩾ 1

x1 + x3 ⩾ 1

x2 + x3 ⩾ 1

x1, x2, x3 ∈ N.

Let w1 = w2 = w3 = 1. Observe that we need at least two of the vertices in our vertex cover, i.e.
the optimum of this integer program is 2. On the other hand, the vector x = (1/2, 1/2, 1/2) is a
feasible solution to the linear programming relaxation of objective value 3/2 < 2. Assume that
the polyhedron of the LP relaxation is integral. Thus, then the simplex algorithm will compute
an optimal integer solution to the relaxation. As we have seen above, every integer solution has
a value of at least 2, while an optimum fractional solution has a value of at less than 3/2 , a
contradiction.


