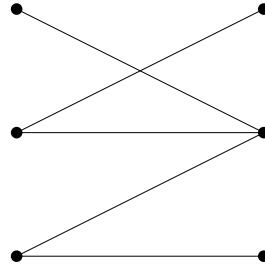


Discrete Optimization (Spring 2025)

Assignment 11

1) Find a maximum cardinality matching and a minimum cardinality vertex cover in the following graph.



2) Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix and $b \in \mathbb{R}^n$ a vector. The ellipsoid $E(A, b)$ is defined as the image of the unit ball under the linear mapping $t(x) = Ax + b$. Show that

$$E(A, b) = \{x \in \mathbb{R}^n : (x - b)^\top A^{-\top} A^{-1} (x - b) \leq 1\}.$$

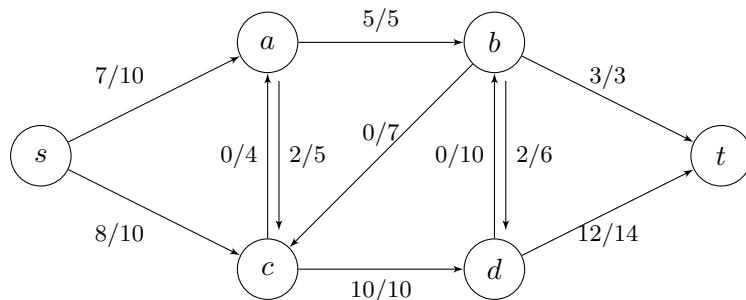
3) Draw $E(A, b)$ for $A = \begin{pmatrix} 1 & 3 \\ 2 & 5 \end{pmatrix}$ and $b = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. What are the axes of $E(A, b)$?

4) Let $D = (V, A)$ be a directed graph and $A_D \in \{0, \pm 1\}^{|V| \times |A|}$ be the node-edge incidence matrix of D . Assume that the underlying undirected graph $G = (V, E)$ with $E = \{uv : uv \in A \text{ or } vu \in A\}$ is connected.

i) Show that any row of A_D is in the span of the other rows.

ii) Let $T \subseteq A$ be a selection of $n - 1$ arcs of A such that the induced undirected graph is a spanning tree of G . Show that the corresponding columns of A_D are linearly independent.

5) Let $f \in \mathbb{R}_{\geq 0}^{|A|}$ be a flow of a directed graph. Show that we can find a feasible flow f^* such that $f^* = \sum_{p \in P} \mu_p \cdot p + \sum_{c \in C} \mu_c \cdot c$ where C is a set of cycles in the graph, P is a set of paths in the graph, and $\mu_l, \mu_p \in \mathbb{R}_{\geq 0}$.



Example: This flow can be decomposed into the following combination of paths:

• $p1 : s \rightarrow a \rightarrow b \rightarrow t$ ($f1$ assigns 3 units to each edge in $p1$)

- $p2 : s \rightarrow c \rightarrow d \rightarrow t$ ($f2$ assigns 8 units to each edge in $p2$)
- $p3 : s \rightarrow a \rightarrow b \rightarrow d \rightarrow t$ ($f3$ assigns 2 units to each edge in $p3$)
- $p4 : s \rightarrow a \rightarrow c \rightarrow d \rightarrow t$ ($f4$ assigns 2 units to each edge in $p4$)

6) Let $D = (V, A)$ be a digraph. For every $a \in A$, let $l_a, u_a \in \mathbb{R}_{\geq 0}$ be given such that $l_a \leq u_a$. Show that the set of circulations $\{x \in \mathbb{R}^A : A_D x = 0, l \leq x \leq u\}$ (with A_D being the node-arc incidence matrix of D) is nonempty if and only if

$$\sum_{a \in \delta^-(X)} l_a \leq \sum_{a \in \delta^+(X)} u_a \quad \text{for all } X \subseteq V.$$