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1) Find a maximum cardinality matching and a minimum cardinality vertex cover in the following
graph.

Solution:
We match the nodes as follows using the red colored edges to give a maximum matching and
give a minimum vertex cover by the blue shaded nodes. Clearly both have size 3.

2) Let A ∈ Rn×n be an invertible matrix and b ∈ Rn a vector. The ellipsoid E(A, b) is defined as
the image of the unit ball under the linear mapping t(x) = Ax+ b. Show that

E(A, b) = {x ∈ Rn : (x− b)⊤A−⊤A−1(x− b) ⩽ 1}.

Solution:
The ellipsoid E(A, b) is the image of the unit ball by a linear mapping t(x) = Ax+ b. The unit
ball is denoted by B(0, 1) := {x ∈ R2 : ∥x∥22 ⩽ 1}. Hence,

E(A, b) = {t(x) ∈ R2 : ∥x∥22 ⩽ 1}
= {Ax+ b ∈ R2 : ∥x∥22 ⩽ 1}
= {y ∈ R2 : ∥A−1(y − b)∥22 ⩽ 1}
= {y ∈ R2 : (y − b)TA−TA−1(y − b) ⩽ 1}.

3) Draw E(A, b) for A =

(
1 3
2 5

)
and b =

(
1
2

)
. What are the axes of E(A, b)?

Solution:
Using the previous exercise, we have that E(A, b) = {x ∈ R2 : (x − b)TA−TA−1(x − b) ⩽ 1}.



From linear algebra, the matrix A−TA−1 is symmetric, in particular has real eigenvalues and is
diagonalizable by an orthogonal matrix S, i.e. A−TA−1 = SDST , where D is diagonal. So we
can rewrite

E(A, b) = {x ∈ R2 : (ST (x−b))TDS(x−b) ⩽ 1} = {x ∈ R2 : λ1(v
T
1 (x−b))2+λ2(v

T
2 (x−b))2 ⩽ 1}

where λ1, λ2 are eigenvalues of A
−TA−1 and v1, v2 are the corresponding eigenvectors. Therefore,

the eigenvectors of the matrix A−TA−1 define the principal directions of the ellipsoid and the
square root of the corresponding eigenvalues determines their length. For our example we have
v1 ≈ (3.17, 5.38) and v2 ≈ (−0.14, 0.08) with λ1 = 39 and λ2 = 0.026.

4) LetD = (V,A) be a directed graph and AD ∈ {0,±1}|V |×|A| be the node-edge incidence matrix of
D. Assume that the underlying undirected graph G = (V,E) with E = {uv : uv ∈ A or vu ∈ A}
is connected.

i) Show that any row of AD is in the span of the other rows.

ii) Let T ⊆ A be a selection of n − 1 arcs of A such that the induced undirected graph is a
spanning tree of G. Show that the corresponding columns of AD are linearly independent.

Solution:

i) Sum up all of the rows in AD. Since every column corresponds to a directed edge, the
column has exactly one +1 entry corresponding to the incoming node and one −1 entry
corresponding to the outgoing node. Thus summing all rows gives the all zeros vector which
means that any row is in the span of the other rows.

ii) We proceed by induction on n:

Base case: n = 2 is true trivially.

Suppose it is true for a tree on n nodes then let T be a tree on n+1 nodes. Let the incidence
matrix of T have columns c1, . . . , cn. I.e. for n+ 1 nodes there are n edges of the spanning
tree so n columns of the incidence matrix. Without loss of generality, we assume column n
represents an edge attached to a leaf. (say node vn+1 is a leaf). Removing node vn+1 (thus
edge en) gives another tree on n nodes with incidence matrix of columns c1, . . . , cn−1.

By induction, this smaller incidence matrix has linearly independent columns. Adding back
vn+1 we get back our original incidence matrix. let a1c1 + ... + an−1cn−1 + ancn = 0 such
that the full set of columns of T are not linearly independent.
Case 1: an = 0 then by linear independence of ci for i ⩽ n − 1 we must have ai = 0 for
i ⩽ n− 1.

Case 2: an ̸= 0 then a1c1 + ... + an−1cn−1 = −ancn =⇒ b1c1 + ...bn−1cn−1 = cn where
bk = − ak

an
. Thus cn is linear combination of columns of the smaller spanning tree. This

gives a contradiction since cn(vn+1) = 1 since the final edge is incident to node vn+1 and as
the degree of vn+1 is 1 in T , column cn is the only column with nonzero entry on row n+1.

5) Let f ∈ R|A|
⩾0 be a flow of a directed graph. Show that we can find a feasible flow f∗ such that

f∗ =
∑

p∈P µp · p+
∑

c∈C µc · c where C is a set of cycles in the graph, P is a set of paths in the
graph, and µl, µp ∈ R⩾0.
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Example: This flow can be decomposed into the following combination of paths:
•p1 : s → a → b → t (f1 assigns 3 units to each edge in p1)
•p2 : s → c → d → t (f2 assigns 8 units to each edge in p2)
•p3 : s → a → b → d → t (f3 assigns 2 units to each edge in p3)
•p4 : s → a → c → d → t (f4 assigns 2 units to each edge in p4)

Solution:
Given network with a feasible flow f we construct the following procedure to get f∗:

(a) Find Γ, any path or cycle with unequal flow values on its edges.

(b) Let the flow quantity of Γ be the minimum flow on any edge of Γ. Reduce the flow on every
edge of Γ by that quantity. Return to step 1.

Step 2 reduces flow until it completely removed flow from at least one edge of Γ. Thus the
algorithm continues while any path or cycle has unequal flow values and must terminate if the
entire network has flow value 0, so that we eventually halt either with 0 flow everywhere which
is feasible for f∗ or with a decomposition of flow as paths and cycles of equal flow value. These
paths and cycles with equal flow value form our f∗ with flow values µp and µc for the given
paths and cycles.

6) Let D = (V,A) be a digraph. For every a ∈ A, let la, ua ∈ R⩾0 be given such that la ⩽ ua.
Show that the set of circulations {x ∈ RA : ADx = 0, l ⩽ x ⩽ u} (with AD being the node-arc
incidence matrix of D) is nonempty if and only if∑

a∈δ−(X)

la ⩽
∑

a∈δ+(X)

ua for all X ⊆ V.

Solution:
We first prove the ⇒ direction. Assume that the set of circulations is nonempty and let x ∈ RA

be such a circulation. Then for any X ⊆ V we have∑
a∈δ−(X)

la ⩽
∑

a∈δ−(X)

xa =
∑

a∈δ+(X)

xa ⩽
∑

a∈δ+(X)

ua,

where the first and last inequality follows from l ⩽ x ⩽ u and the equality in the middle follows
from ADx = 0: for each node v ∈ X we have

∑
a∈δ−(v) xa =

∑
a∈δ+(v) xa, summing them up

over all v ∈ X and cancelling common terms on both sides.

Next we prove the ⇐ direction. For each X ⊆ V , define its slack s(X) :=
∑

a∈δ+(X) ua −∑
a∈δ−(X) la. Assume that

∑
a∈δ−(X)

la ⩽
∑

a∈δ+(X)

ua holds for all X ⊆ V , i.e., s(X) ⩾ 0 for all



X ⊆ V . We will construct a circulation x ∈ RA. First if for all a ∈ A we have ua = la, then we
claim that x := u = l is a circulation. Indeed, for any v ∈ V , we have

0 ⩽ s({v}) =
∑

a∈δ+(v)

ua −
∑

a∈δ−(v)

la =
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa

and
0 ⩽ s(V \ {v}) =

∑
a∈δ+(V \{v})

ua −
∑

a∈δ−(V \{v})

la =
∑

a∈δ−(v)

xa −
∑

a∈δ+(v)

xa

which implies that
∑

a∈δ+(v) xa −
∑

a∈δ−(v) xa = 0 for each v ∈ V , i.e., ADx = 0. Next we deal
with the case when there exists a ∈ A such that ua > la. We will present a procedure, which
increases la and decreases ua so that eventually ua = la, and at the same time maintaining the
non-negativity of s(X) for all X ⊆ V . Then by doing the procedure for each a ∈ A with ua > la
one at a time, we can reduce the problem to the case u = l which we have solved.

The procedure is as follows. For any a ∈ A with ua > la, take X ⊆ V to be the subset with the
minimum slack such that a ∈ δ+(X), and take Y ⊆ V to be the subset with the minimum slack
such that a ∈ δ−(Y ). Define A′ ⊆ A to be all the arcs between X \ Y and Y \ X. Note that
a ∈ A′. Then we have

s(X) + s(Y ) = s(X ∩ Y ) + s(X ∪ Y ) +
∑
a′∈A′

(ua′ − la′) ⩾ ua − la > 0.

Pick α, β ⩾ 0 such that α+ β = ua − la and α ⩽ s(X), β ⩽ s(Y ). Then we increase la to la + β
and decrease ua to ua − α. By the minimality of s(X), s(Y ), the slacks of all subsets of V are
still non-negative.


