

Discrete Optimization (Spring 2025)

Assignment 10

- 1) Let $M \in \mathbb{Z}^{n \times m}$ be totally unimodular. Prove that the following matrices are totally unimodular as well.
 - (a) M^T
 - (b) $(M \ I_n)$
 - (c) $(M \ -M)$
 - (d) $M \cdot (I_n - 2e_j e_j^T)$ for any $j \in [n]$.
- 2) A family \mathcal{F} of subsets of a finite groundset E is laminar, if for all $C, D \in \mathcal{F}$, one of the following holds:
 - (a) $C \cap D = \emptyset$
 - (b) $C \subseteq D$
 - (c) $D \subseteq C$.

Let F_1 and F_2 be two laminar families of the same groundset E and consider its union $F_1 \cup F_2$. Define the $|F_1 \cup F_2| \times |E|$ adjacency matrix A as follows: For $F \in F_1 \cup F_2$ and $e \in E$ we have $A_{F,e} = 1$, if $e \in F$ and $A_{F,e} = 0$ otherwise.

Show that A is totally unimodular.

- 3) Let G be a graph and let A be its node-edge incidence matrix. We have seen that if G is bipartite then A is totally unimodular. Prove the converse, i.e., if A is totally unimodular then G is bipartite.
- 4) Given a graph $G = (V, E)$, the spanning tree polytope $PST(G)$ is defined as follows:

$$PST(G) = \{x \in \mathbb{R}^E : x(E(U)) \leq |U| - 1 \ \forall U \subset V, x(E) = |V| - 1, x \geq 0\}.$$

We will show that each vertex of $PST(G)$ is integral (i.e. $PST(G)$ is the convex hull of the incidence vectors of the spanning trees of G) by an uncrossing argument. Given x^* a vertex of $PST(G)$, let $F = \{U \subset V : x^*(E(U)) = |U| - 1\}$.

- (a) Let $A, B \in F$, show that $A \cap B, A \cup B \in F$.
- (b) Show that if L is a maximal laminar subfamily of F , then $span(L) = span(F)$ (where $span(F) = span\{\chi^{E(A)}, A \in F\}$, and similarly for L).