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1) Let M ∈ Zn×m be totally unimodular. Prove that the following matrices are totally unimodular
as well.

(a) MT

(b)
(
M In

)
(c)

(
M −M

)
(d) M ·

(
In − 2eje

T
j

)
for any j ∈ [n].

Solution:

(a) Let A be a square submatrix of MT . Then det(A) = det(AT ) ∈ {−1, 0, 1} as AT is a
square submatrix of M and M is totally unimodular.

(b) Let A be a square submatrix of (M In). Let a1, ..., ak be the columns of A that originate from
In . Hence, each of these columns has as most one 1-entry, the other entries are 0. Hence,
using Laplace-expansion successively along these columns we get that |det(A)| = | det(A′)|
for some square submatrix of M . Since M is TU, this shows det(A) ∈ {−1, 0, 1}.

(c) Let A be a square submatrix of
(
M −M

)
. Let a1, ..., ak be the columns of A that originate

from −M . Let A′ be the matrix obtained from A by multiplying a1, ..., ak with −1. Hence
|det(A)| = |det(A′)|. Now we distinguish two cases. Case 1: A′ is (up to permutation of
columns) a square submatrix of M . Since M is TU, we have det(A′) ∈ {−1, 0, 1}. Case 2:
A′ has at least two identical columns. Hence det(A′) = 0. We conclude that in both cases
we have det(A) ∈ {−1, 0, 1}.

(d) Observe that M · (In − 2eje
T
j ) is obtained from M by multiplying one column with −1.

Thus, M · (In − 2eje
T
j ) is (up to permutation of columns) a submatrix of

(
M −M

)
. Thus

this matrix is also TU.

2) A family FF of subsets of a finite groundset E is laminar, if for all C,D ∈ F , one of the following
holds:

(a) C ∩D = ∅
(b) C ⊆ D

(c) D ⊆ C.

Let F1 and F2 be two laminar families of the same groundset E and consider its union F1 ∪ F2.
Define the |F1 ∪ F2| × |E| adjacency matrix A as follows: For F ∈ F1 ∪ F2 and e ∈ E we have
AF,e = 1, if e ∈ F and AF,e = 0 otherwise.
Show that A is totally unimodular.

Solution:
Let F1 and F2 be two laminar families on the same groundset E , and A the corresponding
adjacency matrix. Observe that every square submatrix of A also is the adjacency matrix of



two laminar families: Removing a row from A corresponds to deleting a set from the laminar
families. Removing a column from A corresponds to removing an element of the ground- set
from all sets of the laminar families. Both operations preserve the structure of laminar families.

For that reason, it is sufficient to show the following statement: Every square matrix A that is
adjacency matrix of two laminar families has determinant ±1 or 0. We will transform A with
elementary column operations as follows: Let e ∈ E be an element from the groundset that is
contained in at least two sets from F1. Let S1, ..., Sk be the sets of F1 with e ∈ Si . Using the
properties of laminar families, we know that there is a l ∈ {1, ..., k} such that Sl ⊆ Si for all
i = 1, ..., k. Redefine Si := Si \Sl for all i ̸= l . Observe that F1 is still a laminar family after this
modification. Also observe that the operation of removing the set Sl corresponds to subtraction
the row Sl from the other rows Si in the matrix A. Hence we can apply this transformation until
each e ∈ E is contained in at most one set of F1. Similarly we can apply this transformation to
F2 until each e ∈ E is contained in at most one set of F2. Applying the corresponding elementary
row operations to A yields a matrix A′ with det(A) = det(A′). A′ has the property that there
are two disjoint subsets of rows, the rows corresponding to F1 and the rows corresponding to F2,
such that each column of A′ has at most one 1-entry in the rows of F1 and at most one 1-entry
in the rows of F2. All other entries are 0.
Let A′′ be the submatrix of A′ consisting only of the columns with two 1-entries. Note that this
is a node-edge incidence matrix of a bipartite graph. Hence A′′ is TU. With Exercise 1.2 we get
that A′ is TU. Hence det(A) ∈ {−1, 0, 1}.

3) Let G be a graph and let A be its node-edge incidence matrix. We have seen that if G is
bipartite then A is totally unimodular. Prove the converse, i.e., if A is totally unimodular then
G is bipartite.

Solution:
Let the incidence matrix of G be totally unimodular and assume towards contradiction that G is
not bipartite. Then G must contain a cycle of odd length. Let this cycle contain some vertices of
G {v1, . . . , v2k+1} for some k ∈ N. Let the edges of this cycle be {e1, . . . , e2k+1}. Now, consider
the submatrix of A indexed by [v1, . . . , v2k+1]× [e1, . . . , e2k+1]. Then this submatrix of the cycle
(up to permutation of the columns) looks as follows:

e1 e2 e3 . . . e2k+1

v1 1 0 0 . . . 0 1
v2 1 1 0 . . . 0 0
v3 0 1 1 . . . 0 0
...

. . .

v2k+1 0 0 0 . . . 1 1

Then since the number of rows and columns is odd, we can do row reduction and end with one
row that has a value 2 giving the whole submatrix a determinant of 2. This means A is not
submodular, a contradiction.

4) Given a graph G = (V,E), the spanning tree polytope PST (G) is defined as follows:

PST (G) = {x ∈ RE : x(E(U)) ⩽ |U | − 1 ∀U ⊂ V, x(E) = |V | − 1, x ⩾ 0}.

We will show that each vertex of PST (G) is integral (i.e. PST (G) is the convex hull of the
incidence vectors of the spanning trees of G) by an uncrossing argument. Given x∗ a vertex of
PST (G), let F = {U ⊂ V : x∗(E(U)) = |U | − 1}.

(a) Let A,B ∈ F , show that A ∩B,A ∪B ∈ F .



(b) Show that if L is a maximal laminar subfamily of F , then span(L) = span(F ) (where
span(F ) = span{χE(A), A ∈ F}, and similarly for L).

Solution:

(a) We have:

|A| − 1 + |B| − 1 = x ∗ (E(A)) + x ∗ (E(B)) ⩽ x ∗ (E(A ∪B)) + x ∗ (E(A ∩B))

where the inequality follows since the edges in E(A ∩B) are counted twice and each other
edge induced by A or B is also induced by A ∪B. Now,

x ∗ (E(A ∪B)) + x ∗ (E(A ∩B)) ⩽ |A ∪B| − 1 + |A ∩B| − 1 = |A| − 1 + |B| − 1

hence all the inequalities hold with equality and in particular x ∗ (E(A∪B)) = |A∪B| − 1
and x ∗ (E(A ∩B)) = |A ∩B| − 1.

(b) Similarly as in the proof seen before, forA ∈ F we define viol(A) = {B ∈ L : A,B are intersecting}.
Assume by contradiction that span(L) is a strict subset of span(F ), and let A such that
χA ∈ span(F ) \ span(L) and |viol(A)| is minimum. By maximality of L, |viol(A)| ⩾ 1
otherwise L ∪ A would be a larger laminar family contained in F . Hence let B ∈ viol(A),
we claim that |viol(A ∩B)| < |viol(A)|. Indeed, let C ∈ viol(A ∩B), C ̸= B, we have that
C \A ∩B,A ∩B \ C,A ∩B ∩ C are non-empty. Moreover, C ∈ L, hence either C ⊂ B, or
B ⊂ C or B∩C = ∅. The last one is not possible as A∩B∩C ⊂ B∩C. So assume C ⊂ B:
then if C ⊂ A, C ⊂ A ∩B, a contradiction to C \ A ∩B being non-empty. If A ⊂ C, then
A ⊂ B, a contradiction to B ∈ viol(A). If A ∩ C = ∅, then we get again a contradiction
to A ∩ B ∩ C being non-empty. Hence in this case A,C are intersecting and the claim is
proved. In the case B ⊂ C, the claim is proved similarly. With analogous arguments one
proves that |viol(A ∪ B)| < |viol(A)|. Now, by minimality of |viol(A)|, we must have that
χE(A∪B), χE(A∩B) ∈ span(L), but then χE(A) = χE(A∪B) + χE(A∩B) − χE(B) ∈ span(L), a
contradiction. (Notice that the equality holds because A,B ∈ F as seen in the proof of part
1).

We remark that we are now able to conclude that the vertices of PST (G) are integral. In
particular, x∗ is the unique solution of the system x(E(U)) = |U | − 1 for

x(E(U)) = |U | − 1 ∀U ∈ F

xe = 0 ∀e ∈ Ē

for some Ē ⊂ E. Using this argument, we can reduce the system to

x(E(U)) = |U | − 1 ∀U ∈ L

xe = 0 ∀e ∈ Ē

Now, the matrix associated to the system is totally unimodular, hence x∗ is an integer
vector.


