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1) Let M € Z™*™ be totally unimodular. Prove that the following matrices are totally unimodular
as well.

(a) MT

(b) (M I)

(c) (M —M)

(d) M- (I, —2eje]) for any j € [n].

Solution:

(a) Let A be a square submatrix of M7 . Then det(A) = det(AT) € {-1,0,1} as AT is a
square submatrix of M and M is totally unimodular.

(b) Let A be a square submatrix of (M I,,). Let ay, ..., ai be the columns of A that originate from
I, . Hence, each of these columns has as most one 1-entry, the other entries are 0. Hence,
using Laplace-expansion successively along these columns we get that | det(A)| = | det(A’)|
for some square submatrix of M . Since M is TU, this shows det(A) € {—1,0,1}.

(c) Let A be a square submatrix of (M —M). Let aq, ..., ag be the columns of A that originate
from —M. Let A’ be the matrix obtained from A by multiplying aq, ..., a; with —1. Hence
| det(A)| = |det(A’)|. Now we distinguish two cases. Case 1: A’ is (up to permutation of
columns) a square submatrix of M . Since M is TU, we have det(A’) € {—1,0,1}. Case 2:
A’ has at least two identical columns. Hence det(A’) = 0. We conclude that in both cases
we have det(A) € {—1,0,1}.

(d) Observe that M - (I, — erejT) is obtained from M by multiplying one column with —1.
Thus, M - (I, — 263'6;) is (up to permutation of columns) a submatrix of (M —M). Thus
this matrix is also TU.

2) A family FF of subsets of a finite groundset F is laminar, if for all C, D € F | one of the following
holds:

(a) CND=10

(by CC D

(¢c) DCC.
Let F1 and F5 be two laminar families of the same groundset E and consider its union Fy U Fb.
Define the |F} U Fy| x |E| adjacency matrix A as follows: For F' € F; U Fy and e € E we have

Ape =1, if e € F and Ap. = 0 otherwise.
Show that A is totally unimodular.

Solution:
Let F; and F5 be two laminar families on the same groundset E , and A the corresponding
adjacency matrix. Observe that every square submatrix of A also is the adjacency matrix of



two laminar families: Removing a row from A corresponds to deleting a set from the laminar
families. Removing a column from A corresponds to removing an element of the ground- set
from all sets of the laminar families. Both operations preserve the structure of laminar families.

For that reason, it is sufficient to show the following statement: Every square matrix A that is
adjacency matrix of two laminar families has determinant £1 or 0. We will transform A with
elementary column operations as follows: Let e € F be an element from the groundset that is
contained in at least two sets from Fy. Let Sy, ..., Sk be the sets of F} with e € S; . Using the
properties of laminar families, we know that there is a [ € {1,...,k} such that S; C S; for all
i =1,...,k. Redefine S; := S;\S; for all ¢ # [ . Observe that F} is still a laminar family after this
modification. Also observe that the operation of removing the set S; corresponds to subtraction
the row S; from the other rows .5; in the matrix A. Hence we can apply this transformation until
each e € F is contained in at most one set of Fy. Similarly we can apply this transformation to
F5 until each e € E is contained in at most one set of 5. Applying the corresponding elementary
row operations to A yields a matrix A" with det(A) = det(A’). A’ has the property that there
are two disjoint subsets of rows, the rows corresponding to F} and the rows corresponding to Fb,
such that each column of A’ has at most one 1-entry in the rows of F} and at most one 1-entry
in the rows of Fy. All other entries are 0.

Let A” be the submatrix of A’ consisting only of the columns with two 1-entries. Note that this
is a node-edge incidence matrix of a bipartite graph. Hence A” is TU. With Exercise 1.2 we get
that A’ is TU. Hence det(A) € {—1,0,1}.

Let G be a graph and let A be its node-edge incidence matrix. We have seen that if G is
bipartite then A is totally unimodular. Prove the converse, i.e., if A is totally unimodular then
G is bipartite.

Solution:

Let the incidence matrix of G be totally unimodular and assume towards contradiction that G is
not bipartite. Then G must contain a cycle of odd length. Let this cycle contain some vertices of
G {v1,...,v9541} for some k € N. Let the edges of this cycle be {eq,...,ear1}. Now, consider
the submatrix of A indexed by [v1,...,vokt1] X [€1,...,e2k+1]. Then this submatrix of the cycle
(up to permutation of the columns) looks as follows:

‘ e1 €2 €3 . €2k+1
V1 1 0 0 ... 01
v 1 1 0 ... 00
V3 0 1 1 00
Vok+1 0 0 0 e 11

Then since the number of rows and columns is odd, we can do row reduction and end with one
row that has a value 2 giving the whole submatrix a determinant of 2. This means A is not
submodular, a contradiction.

Given a graph G = (V, E), the spanning tree polytope PST(G) is defined as follows:
PST(G)={z e RF : 2(E(U)) < |U| - 1VYU C V,2(E) = |V| - 1,z > 0}.

We will show that each vertex of PST(G) is integral (i.e. PST(G) is the convex hull of the
incidence vectors of the spanning trees of G) by an uncrossing argument. Given z* a vertex of
PST(G),let F={U CcV :2*(EU)) =|U| - 1}.

(a) Let A,B € F, show that ANB,AUB € F.



(b) Show that if L is a maximal laminar subfamily of F, then span(L) = span(F') (where
span(F) = span{x”“), A € F}, and similarly for L).

Solution:

(a) We have:
|A| =1+ |B| =1 =% (E(A) + 2% (E(B)) <z (E(AUB)) +z* (E(ANB))

where the inequality follows since the edges in E(A N B) are counted twice and each other
edge induced by A or B is also induced by AU B. Now,

2% (B(AUB)) + 2% (BE(ANB)) < |[AUB| -1+ |ANB| —1=|A|—1+|B| -1

hence all the inequalities hold with equality and in particular z * (E(AU B)) = |[AUB| —1
and zx (E(ANB))=|ANB| - 1.

(b) Similarly as in the proof seen before, for A € F' we define viol(A) = {B € L : A, B are intersecting}.
Assume by contradiction that span(L) is a strict subset of span(F'), and let A such that
x4 € span(F) \ span(L) and |viol(A)| is minimum. By maximality of L, |viol(A)| > 1
otherwise L U A would be a larger laminar family contained in F'. Hence let B € viol(A),
we claim that |viol(A N B)| < |viol(A)|. Indeed, let C € viol(AN B),C # B, we have that
C\ANB,ANB\C,AN BNC are non-empty. Moreover, C € L, hence either C C B, or
B Cc Cor BNC = (). The last one is not possible as ANBNC C BNC. So assume C C B:
then if C C A, C C AN B, a contradiction to C'\ AN B being non-empty. If A C C, then
A C B, a contradiction to B € viol(A). If ANC = (), then we get again a contradiction
to AN BN C being non-empty. Hence in this case A,C are intersecting and the claim is
proved. In the case B C C, the claim is proved similarly. With analogous arguments one
proves that |viol(A U B)| < |viol(A)|. Now, by minimality of |viol(A)|, we must have that
YEAUB) \E(ANB) ¢ span(L), but then y2(4) — yE(AUB) 4\ E(ANB) _ \E(B) ¢ span(L), a
contradiction. (Notice that the equality holds because A, B € F' as seen in the proof of part
1).

We remark that we are now able to conclude that the vertices of PST(G) are integral. In
particular, z* is the unique solution of the system z(E(U)) = |U| — 1 for

z(EWU)=|Ul—-1 YU€eF
=0 VeeFE

for some E C E. Using this argument, we can reduce the system to

z(E(U))=|Ul-1 VYUE€L
z.=0 VYeeE

Now, the matrix associated to the system is totally unimodular, hence z* is an integer
vector.



