
Discrete Optimization – Grading Scheme

Award points only if arguments are complete. No half points are to be given.

OpenQuestions Grading Scheme

Question 15 (8 points)

a) Let P = {x ∈ Rn : Ax ≤ b} ⊆ Rn be a bounded non-empty polyhedron. Then rank(A) = n
and P has vertices (no line).

(+1 point)

Let v1, . . . , vk ∈ Rn be the list of vertices of P . Claim: P = conv(v1, . . . , vk).

P ⊇ conv(v1, . . . , vk) since P is convex. (+1 point)

Suppose P ⊃ conv(v1, . . . , vm) and let x∗ ∈ P \ conv(v1, . . . , vm). Separation theorem implies
there exists c ∈ Rn, β ∈ R with

cTx∗ > β and cT vi < β, i = 1, . . . ,m.

(+1 point)

Optimum of max{cTx : x ∈ P} > β and is attained at a vertex. Contradiction! (+1 point)

b) The LP

min 0Tλ

λ1v1 + · · ·+ λmvm = x∗

λ1 + · · ·+ λm = 1

λ ≥ 0

is infeasible.

Its dual is the LP:

max
(
x∗
1

)T
y

( vi1 )
T y ≤ 0 i = 1, . . . ,m

(+1 point)

The dual is feasible (y∗ = 0) and unbounded max = +∞ (Duality Theorem)

(+1 point)

By adding the inequalities −1 ≤ y ≤ 1 the dual remains feasible. (Scale a feasible y∗ ̸= 0 with
1/∥y∗∥∞.) The optimal value is > 0 and attained at a basic feasible solution y∗B and there are
only finitely many.
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(+1 point)

Conclusion: There exists a finite set of vectors y1, . . . , yk ∈ Rn+1 with

n∑
i=1

(yj)ixi ≤ −(yj)n+1

valid for v1, . . . , vn for each j. And for each x∗ ̸∈ conv(x1, . . . , xm) there exists an i such that

n∑
i=1

(yj)ix
∗
i > −(yj)n+1

This set of inequalities defines therefore conv(v1, . . . , vm). (+1 point)

Question 16 (6 points)

a) For ∥x∥ ≤ 1 one has
∑n

i=2 x
2
i ≤ 1− x21

(+1 point)

and thus(
n+ 1

n

)2(
x1 −

1

n+ 1

)2

+
n2 − 1

n2

n∑
i=2

x2i

≤
(
n+ 1

n

)2(
x1 −

1

n+ 1

)2

+
n2 − 1

n2
(1− x21)

(1)

This shows that x ∈ E if x is contained in the half-ball and x1 = 0 or x1 = 1.

(+1 point)

Consider right-hand-side of (11) as a function of x1, i.e., consider

f(x1) =

(
n+ 1

n

)2(
x1 −

1

n+ 1

)2

+
n2 − 1

n2
(1− x21).

The first derivative is

f ′(x1) = 2 ·
(
n+ 1

n

)2(
x1 −

1

n+ 1

)
− 2 · n

2 − 1

n2
x1.

(+1 point)

We have f ′(0) < 0 and since both f(0) = 1 and f(1) = 1 (and since f(x1) is a 2-degree
polynomial w.r.t. x1), we have f(x1) ≤ 1 for all 0 ≤ x1 ≤ 1 and the assertion follows. (+1 point)

b) E is described asE = {x ∈ Rn | ∥A−1x−A−1b∥}, whereA is the diagonal matrix with diagonal
entries

n

n+ 1
,

√
n2

n2 − 1
, . . . ,

√
n2

n2 − 1

and b is the vector b = (1/(n+ 1), 0, . . . , 0).

E is thus the image of Vn under t(x) = Ax+ b.
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The determinant of A is n
n+1

(
n2

n2−1

)(n−1)/2
and therefore

Vol(E) =
n

n+ 1

(
n2

n2 − 1

)(n−1)/2

· Vn.

(+1 point)

Since 1 + x ≤ ex this is bounded by

e−1/(n+1)e(n−1)/(2·(n2−1)) = e
− 1

2(n+1) .

(+1 point)

Question 17 (4 points)

{A1x ≤ b1} ⊆ {A2x ≤ b2} if and only if:

For each ineq. aTx ≤ β of A2x ≤ b2:

max{aTx : x ∈ Rn, A1x ≤ b1} ≤ β

(+2 point)

Algorithm to decide {A1x ≤ b1} ⊆ {A2x ≤ b2}:

For each inequality aTx ≤ β of A2x ≤ b2 solve the linear program

max{aTx : x ∈ Rn, A1x ≤ b1}.

(+1 point)

If max ≤ β holds every time, then assert {A1x ≤ b1} ⊆ {A2x ≤ b2}

Otherwise, assert {A1x ≤ b1} ⊈ {A2x ≤ b2}

(+1 point)

Question 18 (8 points)

a) Take an optimal flow described by the linear program, and decompose it into cycles using the
flow decomposition theorem. (+1 point)
Suppose there is a flow cycle, that is not the minimum mean cycle, and has length k1 and the
sum of cij ’s is c1. Let f be the sum of values of flow over this cycle (f/k1 per edge). This implies
that this cycle contributes c1 · f/k1 to the value of the objective. Let the minimum mean cycle
have some length k2, and the sum of cij ’s over this cycle is c2. Obviously, c2/k2 < c1/k1. Then
if we took flow value f , and placed it throughout the minimum mean cycle, this flow would
contribute c2 · f/k2 to the objective, and would be a smaller objective value. Therefore, in the
optimum solution all flow goes through the minimum mean cycles. (+2 points)

b) The dual is following:

maxλ

λ+ pi − pj ≤ cij ∀i, j.

(+1 point)
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