Discrete Optimization — Grading Scheme

Award points only if arguments are complete. No half points are to be given.

Open Questions Grading Scheme

Question 15 (8 points)

a)

b)

Let P = {z € R": Az < b} C R" be a bounded non-empty polyhedron. Then rank(A4) = n
and P has vertices (no line).
(+1 point)
Let vy,...,v; € R™ be the list of vertices of P. Claim: P = conv(vy, ..., vg).
P D conv(vy,...,v) since P is convex. (+1 point)
Suppose P D conv(vy,...,v,) andlet * € P\ conv(vy, ..., v,,). Separation theorem implies
there exists ¢ € R", 5 € R with
'z*>Bandclv; < B, i=1,...,m.
(+1 point)
Optimum of max{c’z: z € P} > B and is attained at a vertex. Contradiction! (+1 point)
The LP
min 07\
Mo+ Ao =2
M+t =1
A>0
is infeasible.
Its dual is the LP:
max (xl ) Y
(vf)TySO i=1,...,m
(+1 point)
The dual is feasible (y* = 0) and unbounded max = +oo (Duality Theorem)
(+1 point)

By adding the inequalities —1 < y < 1 the dual remains feasible. (Scale a feasible y* # 0 with
1/|ly*||sc-) The optimal value is > 0 and attained at a basic feasible solution yJ; and there are
only finitely many.



(+1 point)

Conclusion: There exists a finite set of vectors y1, . ..,y € R with

n

> Wi < =)

i=1
valid for vy, . .., v, for each j. And for each x* & conv(zy, ..., x,,) there exists an ¢ such that

n
> Wi)ir > —(Y)ni
=1

This set of inequalities defines therefore conv(vy, ..., vpy). (+1 point)

Question 16 (6 points)
a) For ||z|| < 1lonehas Y I, 27 <1—z?

(+1 point)

and thus

n+1)\? 1\ -1 9
( n ) (xl_n—i-l) T ;x’

n+1\° 1 \? n2-1 9
< S - (1-
_< n > (ml n+1> + n? (1 =)

This shows that x € F if  is contained in the half-ball and 1 = 0 or 21 = 1.

(+1 point)
Consider right-hand-side of (1) as a function of x1, i.e., consider
n+1)2 1 \* n?-1 )
= - 1-— )
f(xl) < " ) <ZE‘1 n+1> + n2 ( xT )
The first derivative is
+1\? 1 n?—1
(o) =22 - —2. .
(1) ( n e n+1 n2 "
(+1 point)

We have f’(0) < 0 and since both f(0) = 1 and f(1) = 1 (and since f(x1) is a 2-degree
polynomial w.r.t. z1), we have f(x;) < 1forall0 < z; < 1 and the assertion follows. (+1 point)

b) Eisdescribedas E = {x € R" | ||[A~ o — A~ 1b

entries
n [ n? n?
n+1’Vn2—1"Vn2-1

and b is the vector b = (1/(n + 1),0,...,0).

}, where A is the diagonal matrix with diagonal

E is thus the image of V,, under t(z) = Az + b.



(n—1)/2
The determinant of A is -2~ ( n? ) and therefore

n+1l \ n2-1
n n2 /2
I(F) = -V
Vol(E) n—|—1(n2—1) Vi
(+1 point)
Since 1 + = < e” this is bounded by
o~ 1/(n41) J(n=1)/(2:(n*=1)) _ = 305T)
(+1 point)
Question 17 (4 points)
{Alx S bl} g {Agx S bg} if and only if:
For each ineq. a’z < f of Agz < bo:
max{a’z: z € R", Ajz < b} <p
(+2 point)
Algorithm to decide {A1x < b1} C {Aszx < by}
For each inequality o’z < /3 of Asx < by solve the linear program
max{a’z: z € R", Ajx < by}
(+1 point)
If max < f3 holds every time, then assert { A1z < b1} C {Asx < by}
Otherwise, assert { A1z < b1} € {Agz < by}
(+1 point)

Question 18 (8 points)

a) Take an optimal flow described by the linear program, and decompose it into cycles using the
flow decomposition theorem. (+1 point)
Suppose there is a flow cycle, that is not the minimum mean cycle, and has length k; and the
sum of ¢;;’s is ¢1. Let f be the sum of values of flow over this cycle (f/k1 per edge). This implies
that this cycle contributes ¢ - f/k; to the value of the objective. Let the minimum mean cycle
have some length k5, and the sum of ¢;;’s over this cycle is co. Obviously, ca/ky < c¢1/k1. Then
if we took flow value f , and placed it throughout the minimum mean cycle, this flow would
contribute ¢y - f/ks to the objective, and would be a smaller objective value. Therefore, in the
optimum solution all flow goes through the minimum mean cycles. (+2 points)

b) The dual is following:

max A

A+pi —pj < ¢y Vi, g

(+1 point)



