

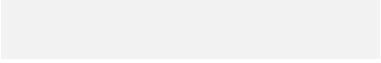
Teacher: Prof. Friedrich Eisenbrand

Discrete Optimization -

21 June 2025

Duration: 180 minutes

# David Hilbert

SCIPER: **2**Signature: 

**Do not turn the page before the start of the exam. This document is double-sided, has 24 pages, the last ones possibly blank. Do not unstaple.**

- Place your student card on your table.
- **No other paper materials** are allowed to be used during the exam.
- Using a **calculator** or any electronic device is not permitted during the exam.
- First part : for the **multiple choice** questions, we give :
  - +2 points if your answer is correct,
  - 0 points if you give no answer or more than one,
  - 1 points if your answer is incorrect.
- Second Part : for the **true/false** questions, we give :
  - +1 points if your answer is correct,
  - 0 points if you give no answer,
  - 1 points if your answer is incorrect.
- Third part : for the **open questions**, the number of points is noted above each question. Leave the checkbox empty. **Use the grid** provided for your response. Each of these grids has a **reserve version** in the corresponding section. We will only consider one grid. If two have been used, **cross out** the one that is not to be evaluated. Any incorrect statement in your text will result in a one-point **deduction**.
- Use a **black or dark blue ballpen** and clearly erase with **correction fluid** if necessary.
- If a question is wrong, the teacher may decide to nullify it.

| Respectez les consignes suivantes   Observe this guidelines   Beachten Sie bitte die unten stehenden Richtlinien                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                              |                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------|
| choisir une réponse   select an answer<br>Antwort auswählen                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ne PAS choisir une réponse   NOT select an answer<br>NICHT Antwort auswählen | Corriger une réponse   Correct an answer<br>Antwort korrigieren |
|       |                                                                              |                                                                 |
| ce qu'il ne faut <b>PAS</b> faire   what should <b>NOT</b> be done   was man <b>NICHT</b> tun sollte                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                              |                                                                 |
|         |                                                                              |                                                                 |

CATALOG

**First part: multiple choice questions**

For each question, mark the box corresponding to the correct answer.

**Question [MCQ-01]** Consider the following linear program

$$\begin{aligned} \max \quad & 3x_1 + x_2 \\ \text{s.t.} \quad & 2x_1 + x_2 + x_3 = 2 \\ & -x_1 + 2x_2 + x_4 = 1 \\ & x_1 \geq 0 \\ & x_2 \geq 0 \\ & x_3 \geq 0 \\ & x_4 \geq 0. \end{aligned}$$

Which of the following is equivalent to the dual of this linear program?



$$\begin{aligned} \min \quad & 2y_1 + y_2 \\ \text{s.t.} \quad & 2y_1 - y_2 \geq 3 \\ & y_1 + 2y_2 \geq 1 \\ & y_1 \geq 0 \\ & y_2 \geq 0. \end{aligned}$$



$$\begin{aligned} \min \quad & 2y_1 + y_2 \\ \text{s.t.} \quad & 2y_1 - y_2 \leq 3 \\ & y_1 + 2y_2 \leq 1 \\ & y_1 \geq 0 \\ & y_2 \geq 0. \end{aligned}$$



$$\begin{aligned} \min \quad & 2y_1 + y_2 \\ \text{s.t.} \quad & 2y_1 - y_2 \geq 3 \\ & y_1 + 2y_2 \geq 1. \end{aligned}$$

None of the others is correct.

**Question [MCQ-02]** Consider the following matrix game defined by

$$\begin{pmatrix} 5 & -1 \\ 2 & 4 \end{pmatrix}$$

Which is an optimal mixed strategy  $y = (y_1, y_2) \in \mathbb{R}^2$  for the column player?

(0, 1)

(5/8, 3/8)

(1, 0)

(3/10, 7/10)

None of these other choices.

CATALOG

**Question [MCQ-03]** Consider the following linear program

$$\begin{aligned}
 \max \quad & x - 4y + 2z \\
 \text{s.t.} \quad & 2x - y - 2z \leq 4 \\
 & -2x + 3y + 3z \leq 5 \\
 & -x + 2y + z \leq 1 \\
 & x \geq 0 \\
 & y \geq 0 \\
 & z \geq 0
 \end{aligned}$$

Solve this linear program using the Simplex algorithm with the *smallest index rule* and initial basis  $\{4, 5, 6\}$ , which corresponds to the vertex  $(0, 0, 0) \in \mathbb{R}^3$ . Which of the following is the path of bases returned by the Simplex algorithm?

Here are the inverse matrices of all the feasible bases.

$$B = \{1, 2, 3\} \Rightarrow A_B^{-1} = \begin{pmatrix} 1 & 1 & -1 \\ 1/3 & 0 & 2/3 \\ 1/3 & 1 & -4/3 \end{pmatrix}, \quad B = \{1, 2, 5\} \Rightarrow A_B^{-1} = \begin{pmatrix} 3/2 & 1 & 3/2 \\ 0 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix}$$

$$B = \{1, 3, 6\} \Rightarrow A_B^{-1} = \begin{pmatrix} 2/3 & 1/3 & -1 \\ 1/3 & 2/3 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \quad B = \{1, 5, 6\} \Rightarrow A_B^{-1} = \begin{pmatrix} 1/2 & -1/2 & -1 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

$$B = \{2, 3, 5\} \Rightarrow A_B^{-1} = \begin{pmatrix} 1 & -3 & -3 \\ 0 & 0 & -1 \\ 1 & -2 & -1 \end{pmatrix}, \quad B = \{3, 4, 5\} \Rightarrow A_B^{-1} = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 1 & -1 & 2 \end{pmatrix}$$

$$B = \{3, 4, 6\} \Rightarrow A_B^{-1} = \begin{pmatrix} 0 & -1 & 0 \\ 1/2 & -1/2 & 1/2 \\ 0 & 0 & -1 \end{pmatrix}, \quad B = \{4, 5, 6\} \Rightarrow A_B^{-1} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

- $\{4, 5, 6\} \rightarrow \{1, 5, 6\} \rightarrow \{1, 2, 5\}$
- $\{4, 5, 6\} \rightarrow \{3, 4, 5\} \rightarrow \{2, 3, 5\} \rightarrow \{1, 2, 3\}$
- $\{4, 5, 6\} \rightarrow \{1, 5, 6\} \rightarrow \{1, 3, 6\}$
- $\{4, 5, 6\} \rightarrow \{3, 4, 6\} \rightarrow \{3, 4, 5\}$
- None of the others is the path.

**Question [MCQ-04]** Which of the following statements about totally unimodular matrices is *false*?

- For any complete bipartite graph,  $G$ , the incidence matrix  $A$  of  $G$  is TU.
- Let  $A$  be a TU matrix and let  $B$  be a  $k \times k$  submatrix of  $A$  where all columns of  $B$  have exactly two nonzero entries. Then it must be that  $\mathbf{1}^T B = 0$  and  $\det(B) = 0$ .
- Let  $A$  be an  $n \times n$  TU matrix. Let  $B$  be the matrix  $A_{[1,k],[1,k]}$  which is the submatrix of  $A$  containing the first  $k$  rows and  $k$  columns. Then  $B^{-1}$  is an integer matrix.
- Let  $A$  be a TU matrix. Then the matrix  $[A \ -A \ I \ -I]$  is also a TU matrix where  $I$  is the identity matrix.

CATALOG

**Question [MCQ-05]** Consider the linear program (I)

$$\begin{aligned} \max \quad & c^T x \\ \text{s.t.} \quad & Ax \leq b, \\ & 0 \leq x_i \leq D, \quad \text{for all } i = 1, \dots, n, \\ & x \in \mathbb{R}^n, \end{aligned}$$

where  $A \in \mathbb{R}^{m \times n}$ ,  $b \in \mathbb{R}^m$ ,  $c \in \mathbb{R}^n$ ,  $D \in \mathbb{R}_{>0}$  and  $\text{rank}(A) = n$ . Suppose that the optimal solution of this linear program (I) is attained at  $y \in \mathbb{R}^n$ . Choose an index  $i$  from  $\{1, \dots, m\}$  uniformly at random, i.e., with probability  $1/m$ . Remove the corresponding inequality  $a_i^T x \leq b_i$  from  $Ax \leq b$  to get  $A'x \leq b'$ . Consider the linear program (II)

$$\begin{aligned} \max \quad & c^T x \\ \text{s.t.} \quad & A'x \leq b', \\ & 0 \leq x_i \leq D, \quad \text{for all } i = 1, \dots, n, \\ & x \in \mathbb{R}^n. \end{aligned}$$

Suppose that the optimal solution of this linear program (II) is attained at  $y' \in \mathbb{R}^n$ . Which of the following must be correct?

- None of the other statements is correct.
- $\Pr[c^T y < c^T y'] \geq 1/m$ .
- $\Pr[c^T y = c^T y'] = D/m$ .
- $\Pr[c^T y < c^T y'] \leq n/m$ .

CATALOG

**Question [MCQ-06]** Consider the problem of finding a feasible solution of  $Ax = b$  with the minimum infinity norm:  $\min\{\|x\|_\infty : Ax = b, x \in \mathbb{R}^n\}$  where  $A \in \mathbb{R}^{m \times n}$  and  $b \in \mathbb{R}^m$ . Which of the following is a correct linear programming formulation of this problem?



$$\begin{aligned} \min \quad & \beta \\ \text{s.t.} \quad & Ax = b, \\ & z_i \geq x_i, \quad \text{for all } i = 1, \dots, n \\ & z_i \geq -x_i, \quad \text{for all } i = 1, \dots, n \\ & z_i \leq \beta, \quad \text{for all } i = 1, \dots, n \\ & x \in \mathbb{R}^n, z \in \mathbb{R}^n, \beta \in \mathbb{R} \end{aligned}$$



$$\begin{aligned} \min \quad & \beta \\ \text{s.t.} \quad & Ax = b, \\ & z_i \geq x_i, \quad \text{for all } i = 1, \dots, n \\ & z_i \geq -x_i, \quad \text{for all } i = 1, \dots, n \\ & \sum_i^n z_i \leq \beta, \\ & x \in \mathbb{R}^n, z \in \mathbb{R}^n, \beta \in \mathbb{R} \end{aligned}$$



$$\begin{aligned} \min \quad & \beta \\ \text{s.t.} \quad & Ax = b, \\ & x_i \leq \beta, \quad \text{for all } i = 1, \dots, n \\ & -x_i \leq \beta, \quad \text{for all } i = 1, \dots, n \\ & x \in \mathbb{R}^n, \beta \in \mathbb{R} \end{aligned}$$



$$\begin{aligned} \min \quad & \beta \\ \text{s.t.} \quad & Ax = b, \\ & \sum_{i=1}^n x_i \leq \beta \\ & x \in \mathbb{R}^n, \beta \in \mathbb{R} \end{aligned}$$



$$\begin{aligned} \min \quad & \beta \\ \text{s.t.} \quad & Ax = b, \\ & x_i \leq \beta, \quad \text{for all } i = 1, \dots, n \\ & x \in \mathbb{R}^n, \beta \in \mathbb{R} \end{aligned}$$

**Second part: true/false questions**

For each question, mark the box (without erasing) TRUE if the statement is **always true** and the box FALSE if it is **not always true** (i.e., it is sometimes false).

**Question [TF-01]** The union of two polyhedra is also a polyhedron.

TRUE       FALSE

**Question [TF-02]** Let  $x^* \in \mathbb{R}^n$  be an optimal solution of the linear program  $\max\{c^T x : Ax \leq b\}$  where  $A \in \mathbb{R}^{m \times n}, c \in \mathbb{R}^n$ . A constraint  $a_i^T x \leq b_i$  of  $Ax \leq b$  is *tight* at  $x^*$  if  $a_i^T x^* = b_i$  holds. Let  $I$  be the set of indices of all the tight inequalities of  $Ax \leq b$  at  $x^*$ .

Then  $c \in \text{cone}(\{a_i\}_{i \in I})$ .

TRUE       FALSE

**Question [TF-03]** For any finite subset  $X \subseteq \mathbb{R}^n$ , there exists  $\tilde{X} \subseteq X$  which is linearly independent and of size  $\leq n$ , such that  $\text{cone}(\tilde{X}) = \text{cone}(X)$ .

TRUE       FALSE

**Question [TF-04]** Consider the simplex algorithm with an unspecified pivoting rule, i.e., the first version of the simplex algorithm we saw in class. An index that has just entered the basis  $B$  can leave  $B$  in the very next iteration.

TRUE       FALSE

**Question [TF-05]** Consider two polyhedra  $P = \{x : Ax \leq b\}$  and  $P' = \{x : A'x \leq b'\}$  where  $A, A' \in \mathbb{R}^{m \times n}$  and  $b, b' \in \mathbb{R}^m$ . If  $P \cap P' = \emptyset$ , then there exists  $y, z \in \mathbb{R}_{\geq 0}^m$  such that  $y^T A + z^T A' = 0$  but  $y^T b + z^T b' < 0$ .

TRUE       FALSE

**Question [TF-06]** Consider the simplex algorithm with an unspecified pivoting rule, i.e., the first version of simplex algorithm we saw in class. An index that has just left the basis  $B$  can enter in the very next iteration.

TRUE       FALSE

**Question [TF-07]** Consider the linear program  $\max\{c^T x : Ax \leq b\}$  with  $A \in \mathbb{R}^{m \times n}$ ,  $b \in \mathbb{R}^m$ ,  $c \in \mathbb{R}^n$  and let  $y^*$  be a feasible solution of its dual. Then for any given  $\alpha \in \mathbb{R}^n, \beta \in \mathbb{R}$ , there exists  $y_0 \in \mathbb{R}$  such that  $(y^*, y_0)$  is also a feasible solution of the dual of  $\max\{c^T x : Ax \leq b, \alpha^T x \leq \beta\}$ .

TRUE       FALSE

**Question [TF-08]** There exists a linear program  $\max\{c^T x : Ax \leq b\}$ , with  $A \in \mathbb{R}^{m \times n}$ ,  $b \in \mathbb{R}^m$ ,  $c \in \mathbb{R}^n$  such that both this linear program and its dual are unbounded.

TRUE       FALSE

**Third part, open questions**

Answer in the empty space below. Your answer should be carefully justified, and all the steps of your argument should be discussed in details. Leave the check-boxes empty, they are used for the grading.

**Question 15:** *This question is worth 8 points.*

|                            |                            |                            |                            |                            |                            |                            |                            |                                       |
|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|---------------------------------------|
| <input type="checkbox"/> 0 | <input type="checkbox"/> 1 | <input type="checkbox"/> 2 | <input type="checkbox"/> 3 | <input type="checkbox"/> 4 | <input type="checkbox"/> 5 | <input type="checkbox"/> 6 | <input type="checkbox"/> 7 | <input checked="" type="checkbox"/> 8 |
|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|---------------------------------------|

In this question, we will prove that a set  $P \subseteq \mathbb{R}^n$  is the convex hull  $P = \text{conv}(v_1, \dots, v_m)$  of some points  $v_1, \dots, v_m \in \mathbb{R}^n$  if and only if  $P = \{x \in \mathbb{R}^n : Ax \leq b\}$  is a bounded polyhedron.

(a) Prove that if  $P$  is a bounded polyhedron, then  $P = \text{conv}(v_1, \dots, v_m)$  for some vectors  $v_1, \dots, v_m \in \mathbb{R}^n$ .

*Hint: Consider the vertices of  $\{Ax \leq b\}$  (are there any?). If convex hull of these is not the entire polytope, separation theorem and a certain optimization problem leads to a contradiction.*



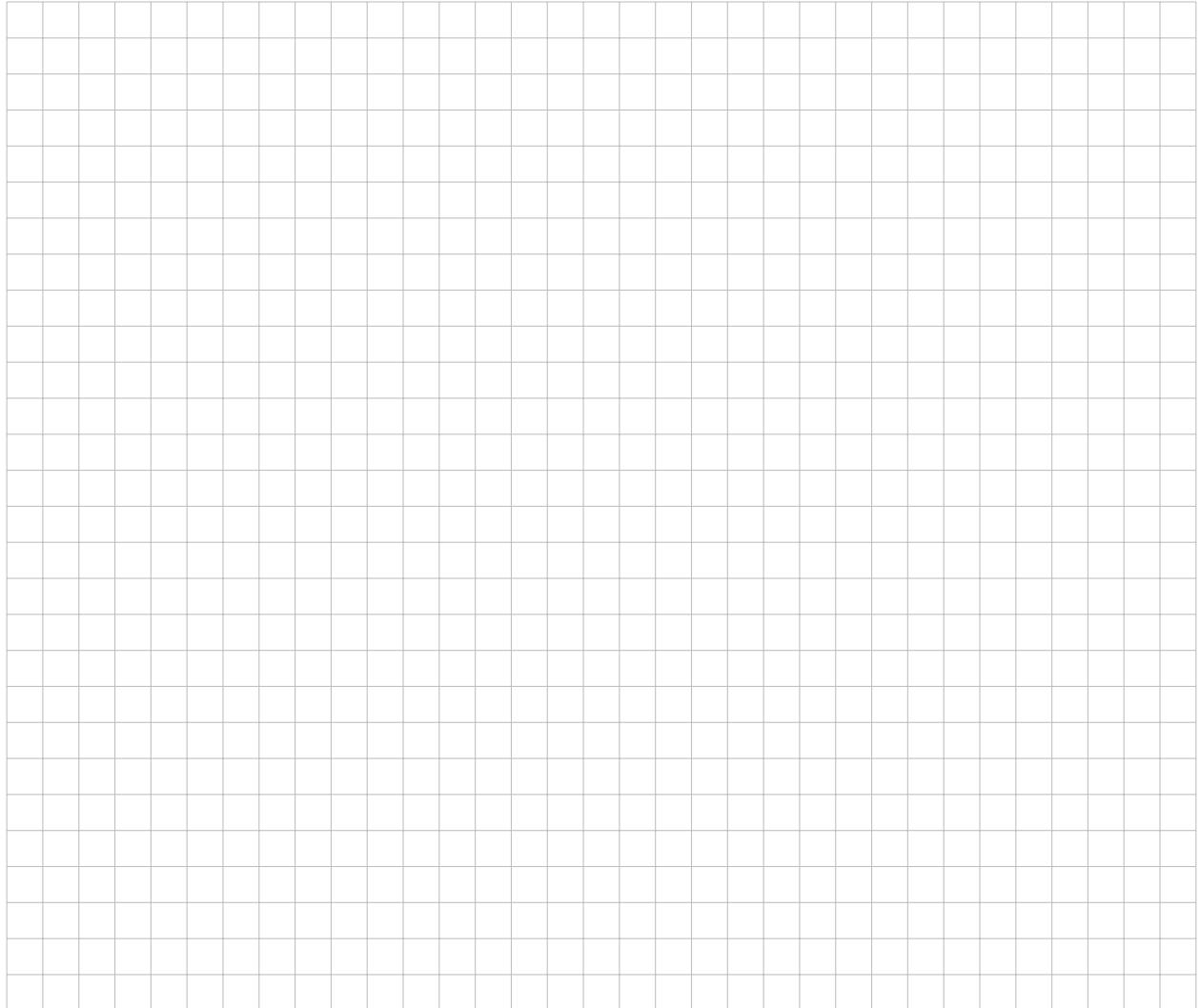
CATALOG

(b) Prove that if  $P = \text{conv}(v_1, \dots, v_m)$  for some vectors  $v_1, \dots, v_m \in \mathbb{R}^n$ , then  $P$  is a bounded polyhedron.

*Hint: For an  $x^* \notin P$ , the linear program*

$$\begin{aligned} \min \quad & 0^T \lambda \\ \text{s.t.} \quad & \lambda_1 v_1 + \dots + \lambda_m v_m = x^* \\ & \lambda_1 + \dots + \lambda_m = 1 \\ & \lambda \geq 0 \end{aligned}$$

*is infeasible. Consider the dual and show that it is feasible. Make it bounded and use the fact that the resulting LP has only a finite number of basic feasible solutions.*



## CATALOG

Reserve space. Check the description on the first page for its use.

(a)



CATALOG

(b)



CATALOG

**Question 16:** *This question is worth 6 points.*

|                            |                            |                            |                            |                            |                            |                                       |
|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|---------------------------------------|
| <input type="checkbox"/> 0 | <input type="checkbox"/> 1 | <input type="checkbox"/> 2 | <input type="checkbox"/> 3 | <input type="checkbox"/> 4 | <input type="checkbox"/> 5 | <input checked="" type="checkbox"/> 6 |
|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|---------------------------------------|

Prove the following two statements.

(a) The half-ball  $H = \{x \in \mathbb{R}^n \mid \|x\| \leq 1, x_1 \geq 0\}$  is contained in the ellipsoid

$$E = \left\{ x \in \mathbb{R}^n \mid \left(\frac{n+1}{n}\right)^2 \left(x_1 - \frac{1}{n+1}\right)^2 + \frac{n^2-1}{n^2} \sum_{i=2}^n x_i^2 \leq 1 \right\}$$

A large grid of squares, approximately 20 columns by 20 rows, intended for the student to write their proof for statement (a). The grid is composed of thin gray lines on a white background.

CATALOG

(b) The volume of the ellipsoid  $E$  defined in (a) is bounded by  $e^{-\frac{1}{2(n+1)}} \cdot V_n$ , where  $V_n$  is the volume of the unit ball in  $\mathbb{R}^n$ . *Hint: For any  $x \in \mathbb{R}$ ,  $1 + x \leq e^x$ .*



## CATALOG

Reserve space. Check the description on the first page for its use.

(a)



CATALOG

(b)

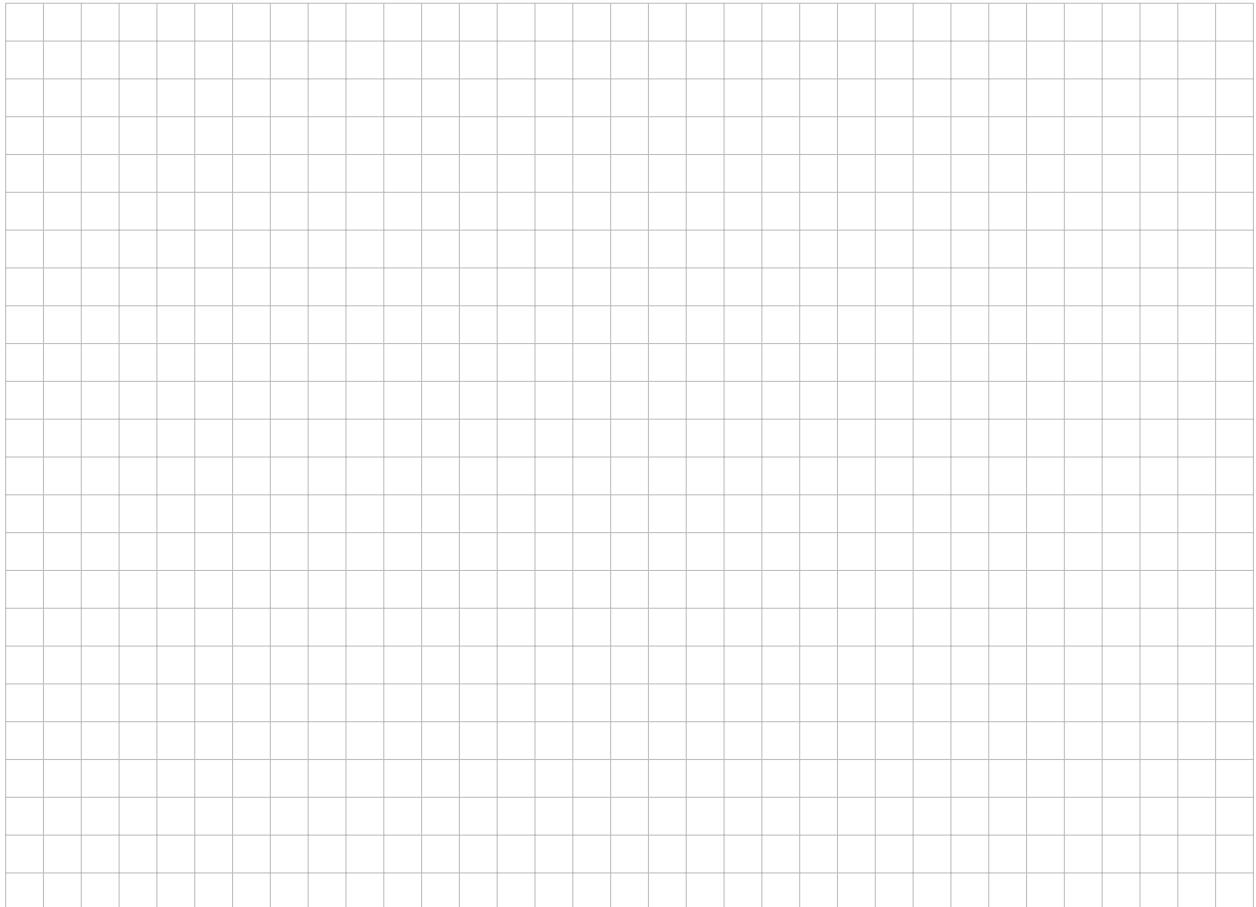


CATALOG

**Question 17:** *This question is worth 4 points.*

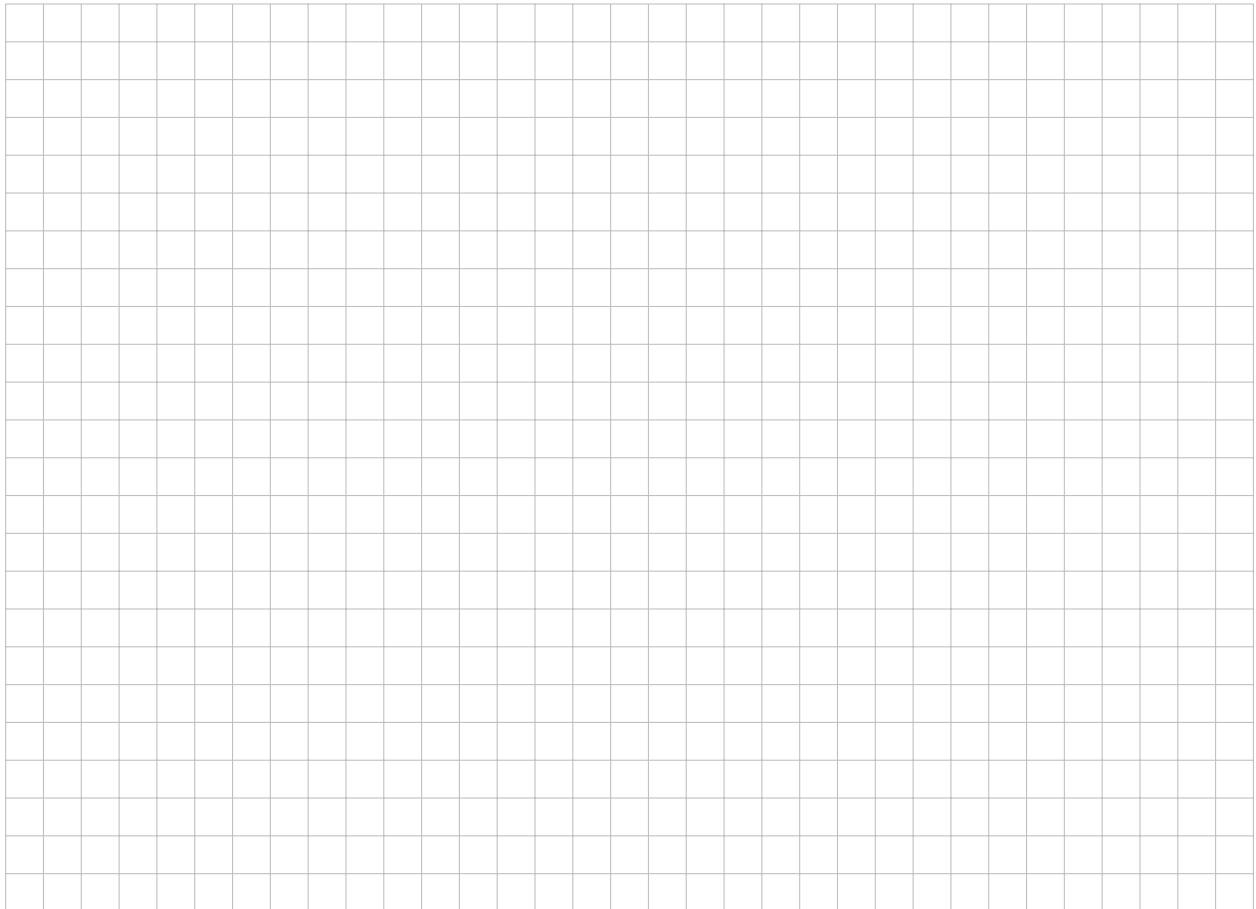
<sub>0</sub>  <sub>1</sub>  <sub>2</sub>  <sub>3</sub>  <sub>4</sub>

Let  $A_1 \in \mathbb{R}^{m_1 \times n}$ ,  $A_2 \in \mathbb{R}^{m_2 \times n}$  and  $b_1 \in \mathbb{R}^{m_1}$ ,  $b_2 \in \mathbb{R}^{m_2}$ . Describe (in words, no pseudo-code) an algorithm, based on linear programming that decides whether  $\{x \in \mathbb{R}^n : A_1x \leq b_1\} \subseteq \{x \in \mathbb{R}^n : A_2x \leq b_2\}$ . Justify correctness of your algorithm.



## CATALOG

Reserve space. Check the description on the first page for its use.



## CATALOG

**Question 18:** *This question is worth 4 points.*

0  1  2  3  4

Consider the complete directed graph  $G = (V, A)$  on  $n$  vertices with a cost function  $c : A \rightarrow \mathbb{R}$  where each arc  $(i, j) \in A$  has cost  $c_{ij}$ . Note that the costs are possibly negative. Suppose that you want to find a minimum *mean cycle* in  $G$ , which is a cycle with the minimum ratio of cost to length (number of edges) of the cycle. Going around such a cycle repeatedly (assuming it is negative) provides you with the maximum possible profit per unit length/time, so is the fastest way to earn money if you are, for example, a delivery service. Minimum mean cycle also arises as a subroutine for solving problems like min cost flow.

Consider the following linear program:

$$\begin{aligned}
 & \min \sum_{i=1}^n \sum_{j=1}^n c_{ij} f_{ij} \\
 & \text{s.t. } \sum_j f_{ij} - f_{ji} = 0, \quad \forall i = 1, \dots, n, \\
 & \quad \sum_{i=1}^n \sum_{j=1}^n f_{ij} = 1, \\
 & \quad f_{ij} \geq 0, \quad \forall i, j = 1, \dots, n.
 \end{aligned}$$

(a) Show how a minimum mean-cycle can be recovered from an optimal flow  $f$  of the above LP.

CATALOG

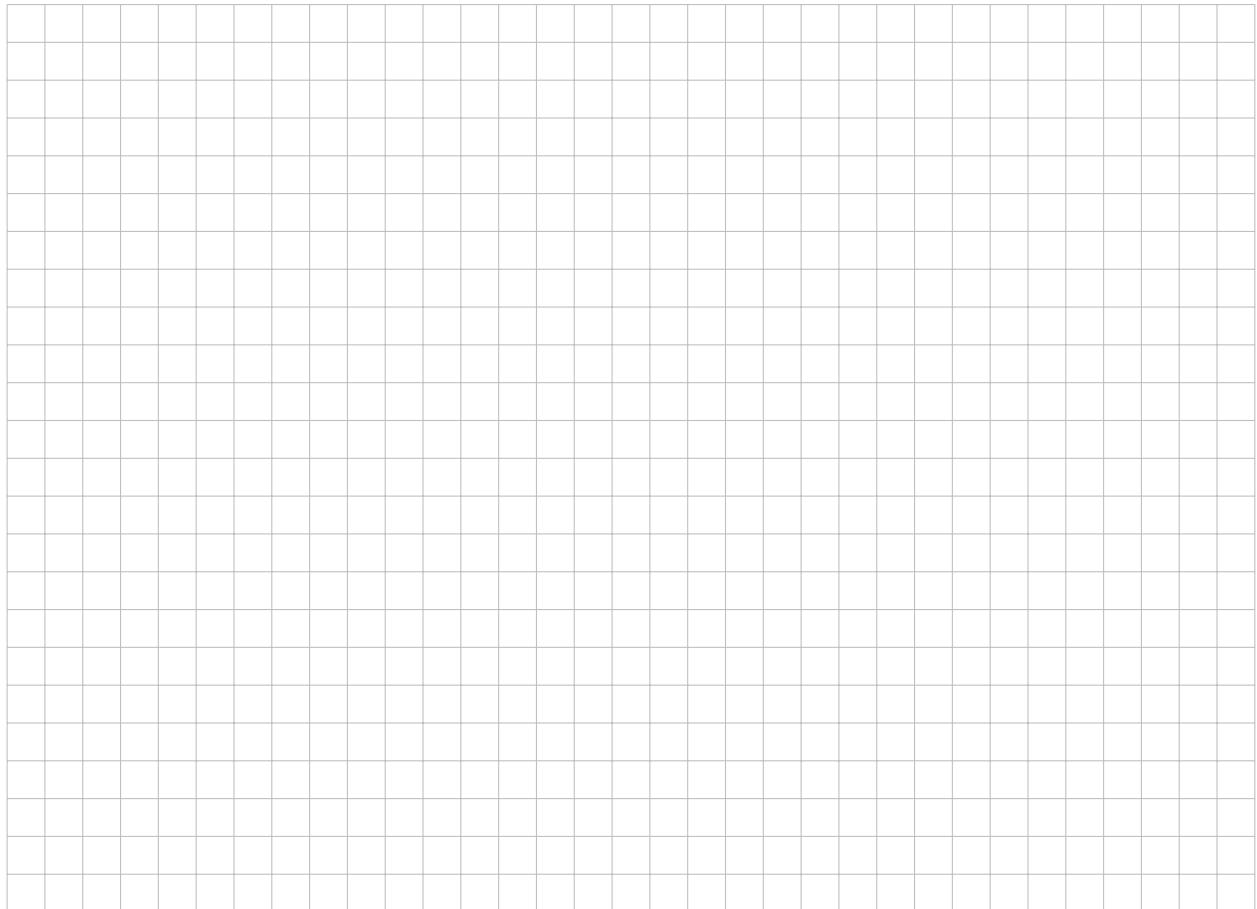
(b) Provide the dual of this linear program.

A large grid of squares, approximately 20 columns by 20 rows, intended for students to write out the dual of a linear program.

## CATALOG

Reserve space. Check the description on the first page for its use.

(a)



CATALOG

(b)



CATALOG

CATALOG

CATALOG

CATALOG