
Polynomial time algorithm

Definition
An algorithm is polynomial time, if there exists a constant k such that the
algorithm performs O(nk) operations on rational numbers whose size is
bounded by O(nk). Here n is the number of bits that encode the input of the
algorithm. We say that the algorithm runs in time O(nk).
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Example: Euclidean algorithm

Input: Integers a > b > 0 not both equal to zero
Output: The greatest common divisor gcd(a,b)

if (b = 0) return a

else
Compute q, r 2 N with b > r > 0 and a = q · b + r

(division with remainder)
return gcd(b, r)
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Determinant

Input: A 2 Qn⇥n

Output: det(A)
if (n = 1)
return a11

else
d := 0
for j = 1, . . . ,n

d := (�1)1+j · det(A1j) + d

return d
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Analysis

Figure: An example of the recursion tree. The tree corresponds to the run of the algorithm on
input
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T(n) is number of arithmetic operations that this algorithm performs
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Gaussian elimination

Input: A 2 Qm⇥n

Output: A0 in row echelon form such that there exists an invertible
Q 2 Qm⇥m such that Q · A = A0 .

A0 := A

i := 1
while (i  m)

find minimal 1  j  n such that there exists k > i such that a0
kj
6= 0

If no such element exists, then stop
swap rows i and k in A0

for k = i + 1, . . . ,m
subtract (a0
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i := i + 1
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Hadamard bound

Theorem (Hadamard bound)
Let A 2 Rn⇥n be non-singular. Then
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where B is upper bound on absolute values of entries of A.
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Analysis

Theorem
The Gaussian algorithm runs in polynomial time on input A 2 Zm⇥n. More

precisely, the rational numbers produced in the algorithm can be maintained

to be ratios of sub-determinants of A0 and are thus of polynomial binary

encoding length.
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Matrix multiplication

If we split the matrices A and B into 4 n/2⇥ n/2 matrices

A =

✓
A11 A12
A21 A22

◆
and B =

✓
B11 B12
B21 B22

◆
(6)

Then ✓
C11 C12
C21 C22

◆
=
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A11 · B11 + A12 · B21 A11 · B12 + A12 · B22
A21 · B11 + A22 · B21 A21 · B12 + A22 · B22

◆
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Strassen’s algorithm

M1 = (A11 + A22) · (B11 + B22)

M2 = (A21 + A22) · B11
M3 = A11 · (B12 � B22)

M4 = A22 · (B21 � B11)

M5 = (A11 + A12) · B22
M6 = (A21 � A11) · (B11 + B12)

M7 = (A12 � A22) · (B21 + B22)

.

C11 = M1 +M4 �M5 +M7
C12 = M3 +M5
C21 = M2 +M4
C22 = M1 �M2 +M3 +M6.
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Strassen’s algorithm

Input: Two n⇥ n matrices A and B

Output: C = FMM(A,B), the product A · B

if n = 1 return a11 · b11
else

M1 = FMM(A11 + A22,B11 + B22)
M2 = FMM(A21 + A22,B11)
M3 = FMM(A11,B12 � B22)
M4 = FMM(A22,B21 � B22)
M5 = FMM(A11 + A12,B22)
M6 = FMM(A21 � A11,B11 + B12)
M7 = FMM(A12 � A22,B21 + B22)
Compute the matrices C11,C12,C21,C22 from M1, . . . ,M7
return C



Analysis

Figure: The analysis of the Strassen algorithm.





Running time

Theorem (Strassen)
Two n⇥ n matrices can be multiplied in time (number of arithmetic

operations) O(n2+log2(7/4)).



One iteration of the simplex algorithm

Theorem
One iteration of the simplex algorithm requires a total number of O(m · n)
operations on rational numbers whose size is polynomial in the input size.
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