Polynomial time algorithm )
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Definition

An algorithm is polynomial fime, if there exists a constant k such that the
algorithm performs O(n¥) operations on rational numbers whose size is
bounded by O(n¥). Here n is the number of bits that encode the input of the
algorithm. We say that the algorithm runs in time O(nk).
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Input: Integers a > b > 0 not both equal to zero & odlb o w
Output: The greatest common divisor ged(a, b) ¢

Secondk veuumie call

if (b =0) return R
if ( ) return a Avithw Ogratoon g (V%)

elseCompu’re g,reNwithb>r>0andla=qg-b+r W v 2 @2,
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return gcd(b, r)
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Analysis
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Determinant
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Input: A e Q™" '
Output: det(A) cht : = o - dk(Al, )
if(n:]) Qna---- Avnn
return ay; - Qe dut (At
else
d:=0 e dut [ Aan)

for j=1,...,n O_t.gﬁ_
d:.= (—])1+f ')det(AU) +d
return d 3
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Figure: An example of the recursion tree. The tree corresponds to the run of the algorithm on A-%
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Gaussian elimination® |_~_| “‘(o 3) fm

Input: A e QMmN
Output: A’ in row echelon form such that there exists an invertible

QeQMMsychthatQ-A=A". %/& ’
A, ::A {E m D a ¥ \a‘. 0" - o Q,\Ir\
i = ] Y 3 " - i .
while (i < m) a o .dm’”‘tp L, o Ok a_% Ve Ol

find minimal T <j < nsuch that there ‘exists k > i such that o,’q. #0
If no such element exists, then stop

swap rows i and k in A’ Awo. Aupis -

fork:i+]7""m ? '-\&\/
subtract (ay;/aj) times row i from row k in A’ OCm'n) o
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Hadamard bound /7.%7 o
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Theorem (Hadamard bound)

Let A € R™" be non-singular. Then

n eeg - A"
|det(A)| < [T llailla < n"/2- B", &=
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where B is upper bound on absolute values of entries of A.
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Analysis

Theorem

The Gaussian algorithm runs in polynomial time on input A € Z™*", More
precisely, the rational numbers produced in the algorithm can be maintained
fo be ratios of sub-determinants of A’ and are thus of polynomial binary
encoding length.
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Matrix multiplication ~ Svve
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If we split the matrices A and B into 4 n/2 x n/2 matrices
A A12> (BH 512>

A= and B = 6

(Am Ao By By ©

(Cn C12> _ (AH Bii+An-By Anc B +A12'522> '
Cor Coxp Aol Byi+Axp By Az Bip+ A By

Then
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Strassen’s algorithm (/m Anxu« e (C« Q)

Cm,: A'M EM-I qu EMD

My = (Ay +Ax)- (B +B)

My = (A1 +A) - Bn

Mz = Ay - (Bi2 — Bo) Cn = My+My—Ms+M;
My = Az - (B2 —Biy) g’"——)cm = M;+Ms

Ms = (An +A) B P > Cy = My+My

Me = (A2 —Amn)- (B +Bip) w —> Cpn = My — M+ Ms+ M.

M; = (A2 —A) - (B + Bp)
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Strassen’s algorithm

Input: Two n x n matrices A and B
Output: C = FMM(A, B), the product A - B

if n=1return a;; - by,
else
My = FMM(A1; + A2, Bi1 + B22)
Mz = FMM(A21 + A2z, B17)
Ms = FMM(Aq1, Bip — 322)
My = FMM (A2, By — B22)
Ms = FMM(A1y + Aj2, By)
Me = FMM(A21 — A1, By1 + By2)
M7 = FMM(Ayp — Agz, Bo1 + Byo)

Compute the matrices Cq1, Cig, Coy, Coy from My, . ..

return C
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Running time

Theorem (Strassen)

Two n x n matrices can be multiplied in time (number of arithmetic
operations) O(n?+oe(7/4)),



One iteration of the simplex algorithm

Theorem

One iteration of the simplex algorithm requires a total number of O(m - n)
operations on rational numbers whose size is polynomial in the input size.
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