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Dual of the Dual

Corollary

If the dual linear program has an optimal solution, then so does the primal

linear program and the objective values coincide.
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Deterministic strategies
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Mixed strategies

Definition

Let A 2 Rm⇥n define a two-player matrix game. A mixed strategy for the

row-player is a vector x 2 Rm

>0
with
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Example: Mixed strategy rock – paper – scissors
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Weak duality

Lemma

Let A 2 Rm⇥n, then
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where X and Y denote the set of mixed row and column-strategies

respectively.
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Minimax-Theorem

Theorem (von Neumann (1928))
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where X and Y denote the set of mixed row and column-strategies

respectively.
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HOW To derive this in greater detail
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Duality via Farkas’ lemma

Theorem (Second variant of Farkas’ lemma)

Let A 2 Rm⇥n and b 2 Rm. The system Ax  b has a solution if and only if for all

� > 0 with �TA = 0 one has �Tb > 0.



Duality via Farkas’ lemma



Algorithms and running time analysis

Consider the following algorithm to compute the product of two n⇥ n

matrices A,B 2 Qn⇥n:

for i = 1, . . . ,n
for j = 1, . . . ,n

cij := 0

for k = 1, . . . ,n
cij := cij + aik · akj



O-notation

Definition

Let T , f : N ! R>0 be functions. We say

• T (n) = O(f (n)), if there exist positive constants no 2 N and c 2 R>0 with

T (n)  c · f (n) for all n > n0.

• T (n) = ⌦(f (n)), if there exist constants no 2 N and c 2 R>0 with

T (n) > c · f (n) for all n > n0.

• T (n) = ⇥(f (n)) if
T (n) = O(f (n)) and T (n) = ⌦(f (n)).



Example

Example

The function T (n) = 2n2 + 3n+ 1 is in O(n2), since for all n > 1 one has

2n2 + 3n+ 1  6n2. Here n0 = 1 and c = 6. Similarly T (n) = ⌦(n2), since for

each n > 1 one has 2n2 + 3n+ 1 > n2. Thus T (n) is in ⇥(n2).



E�cient algorithm, first definition

An algorithm runs in polynomial time, if there exists a constant k such that the

algorithm runs in timeO(nk), where n is the length of the input of the algorithm.


