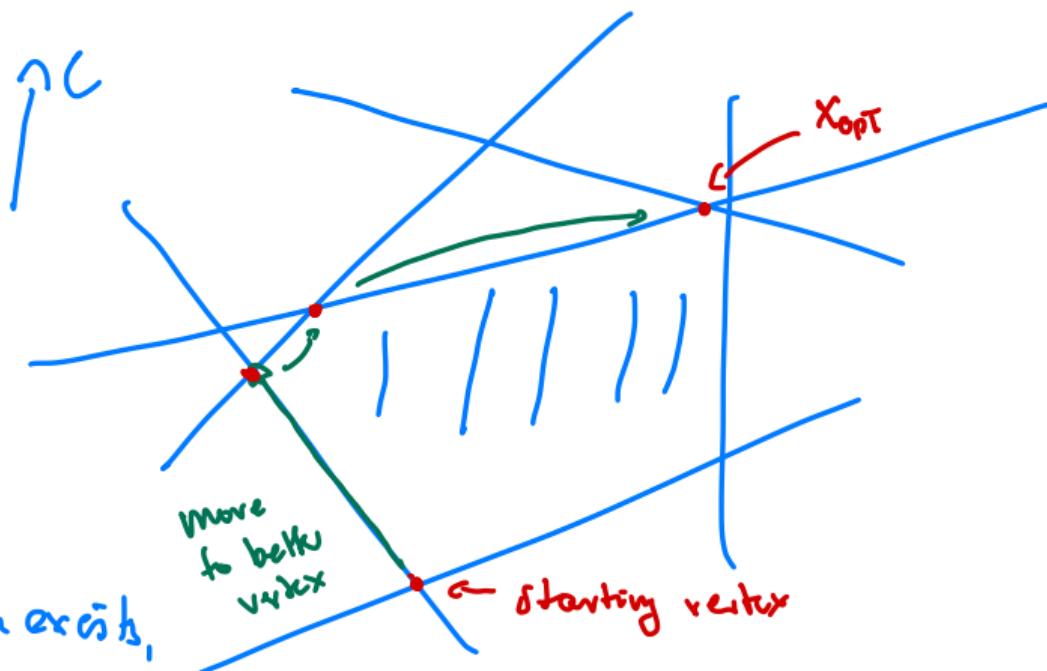


The simplex algorithm

$$\begin{aligned} \max C^T x \\ Ax \leq b \end{aligned}$$

$$A \in \mathbb{R}^{m \times n}$$

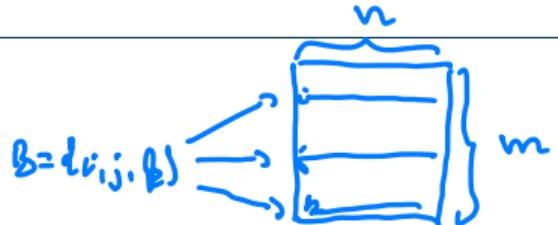
$$\text{rank}(A) = n$$



know: If opt. solution exists,

then \exists optimal solution that is vertex

Notation



Let $B \subseteq \{1, \dots, m\}$

$A_B \in \mathbb{R}^{|B| \times n}$ rows indexed by B

$b_B \in \mathbb{R}^{|B|}$ components indexed by B

$\max c^T x$

$Ax \leq b$

Example: For $A = \begin{pmatrix} 3 & 2 \\ 7 & 1 \\ 8 & 4 \end{pmatrix}$, $b = \begin{pmatrix} 3 \\ 2 \\ 6 \end{pmatrix}$

and $B = \{2, 3\}$, one has

$$A_B = \begin{pmatrix} 7 & 1 \\ 8 & 4 \end{pmatrix} \text{ and } b_B = \begin{pmatrix} 2 \\ 6 \end{pmatrix}.$$

Feasible basis

Rows of A_B are basis of \mathbb{R}^n

Definition

An index set $B \subseteq \{1, \dots, m\}$ is a **basis** if $|B| = n$ and A_B is non-singular. If in addition $x^* = A_B^{-1}b_B$ is feasible, then B is called a **feasible basis**.

Feasible basis vs extreme point

if $P = \{Ax \leq b\}$

remember: $v \in P$ is vertex \Leftrightarrow

subsystem $A'x \leq b' < Ax \leq b$

the set. $A' \cdot v = b'$ satisfies

$\text{rank}(A') = n$

If $x^* \in P$ is vertex, then

$$x^* = x_B^* \text{ for some feasible basis } B$$

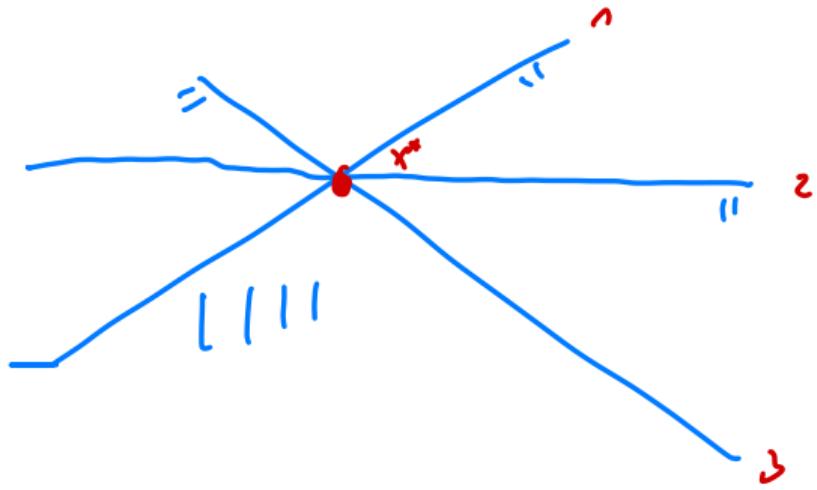
$$= A_B^{-1} \cdot b_B$$

if B is feasible basis $\Rightarrow x_B^*$ is vertex

$$\begin{matrix} \rightarrow \\ \rightarrow \\ \rightarrow \\ \left. \begin{matrix} \uparrow \\ A \end{matrix} \right\} \\ \text{lin. indep} \\ \text{rows} \Rightarrow B \end{matrix}$$

$$A' \cdot x^* = b'$$

Feasible basis vs extreme point



x^* is vertex represented
by feasible basis

21.25, 22.33 and
21.51

(degenerate)

Optimal basis

$$\max c^T \cdot x$$

$$Ax \leq b$$

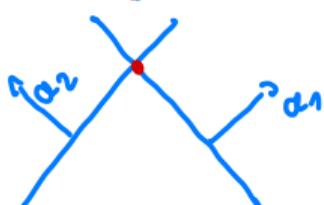
Definition

A basis B is called **optimal** if it is feasible and the unique $\lambda \in \mathbb{R}^m$ with

$$\lambda^T A = c^T \text{ and } \lambda_i = 0, i \notin B \quad (3)$$

satisfies $\lambda \geq 0$.
In other words if B is feasible and unique $\lambda_B \in \mathbb{R}^n$

with $\lambda_B^T \cdot A_B = c^T$ satisfies $\lambda_B \geq 0$



$$c^T = \lambda_1 a_1 + \lambda_2 a_2 \quad \lambda_1, \lambda_2 \geq 0$$

Optimal basis vs. optimal solution

Theorem

If B is an optimal basis, then $x^* = A_B^{-1}b_B$ is an optimal solution of the linear program.

$$\max c^T \cdot x$$

$$A \cdot x \leq b$$

proof:

$$\max c^T \cdot x \leq$$

$$A \cdot x \leq b$$

LP(1)

$$\max c^T \cdot x$$

$$A_B \cdot x \leq b_B$$

LP(2)

To show: x_B^* is opt. sol. of LP(2)

Let $z \in \mathbb{R}^n$ be feasible for LP(2)

$$c^T \cdot z = \underbrace{\lambda_B^T}_{\geq 0} \cdot \underbrace{A_B \cdot z}_{\leq b_B} = c^T$$

$$\leq \lambda_B^T \cdot b_B = \lambda_B^T A_B \cdot x_B^* \quad \blacksquare$$

Moving to an improving vertex

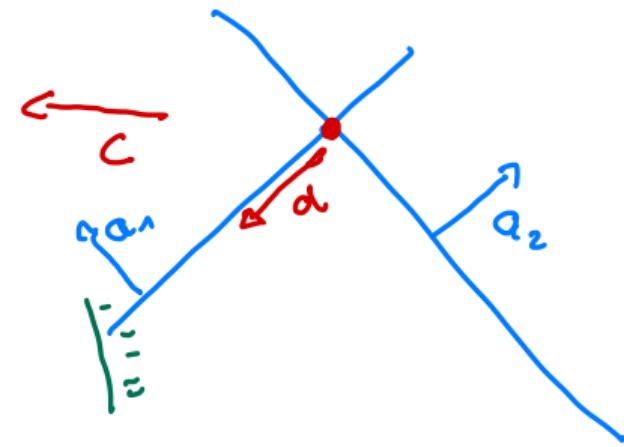
$$B \xrightarrow{i \uparrow j \downarrow} B' \rightsquigarrow$$

$B \subseteq \{1, \dots, m\}$ free basis.

not optimal i.e. $\exists j \in B \quad \lambda_j < 0$ for $\lambda_B^T \cdot A_B = C^T$

$d \in \mathbb{R}^n$ unique solution to

$$a_j^T d = \begin{cases} 0 & \text{for } j \in B \setminus \{i\} \\ -1 & \text{if } j = i. \end{cases}$$



Example: d : $d \perp a_1$ ($d^T \cdot a_1 = 0$)

$$d^T \cdot a_2 = -1$$

$$\lambda_B^T \cdot A_B = C^T$$

$$\lambda_1 < 0$$

$$\lambda_2 < 0$$

Why improving: $C^T(x_B^* + \varepsilon \cdot d) = C^T x_B^* + \varepsilon \underbrace{C^T \cdot d}_{> 0}$

$C^T \cdot d = \lambda_B^T A_B \cdot d > 0$

How far can we move?

$$x_B^* = \tilde{A}_B^{-1} \cdot b_B$$

$$A_B \cdot d = \begin{bmatrix} 0 \\ -1 \\ 0 \\ \vdots \end{bmatrix} \leftarrow i$$

~~x_B^*~~

$$A \left[x_B^* + \varepsilon \cdot d \right] \leq b$$

$$\underbrace{A x_B^*}_{\leq b} + \varepsilon \cdot A \cdot d \leq b$$

Dom
K $\subseteq \{1, \dots, m\}$

WANT: $\varepsilon \cdot A \cdot d \leq b - A \cdot x_B^* \quad \varepsilon > 0$

$$\Leftrightarrow \forall k \in K. \quad \varepsilon \cdot (A \cdot d)_k \leq (b - A \cdot x_B^*)_k \quad \text{be index where min}$$

$$\Leftrightarrow \forall k \in K. \quad \varepsilon \leq \frac{(b - A \cdot x_B^*)_k}{(A \cdot d)_k}$$

$\min_{k \in K} \frac{(b - A \cdot x_B^*)_k}{(A \cdot d)_k}$ is attained. $B' = B - \varepsilon \cdot d$

$$K = \{k : (A \cdot d)_k > 0\}$$

If $K = \emptyset \Rightarrow L P$ unbounded.

otherwise let $j \in K$

How far can we move?

B' is feasible basis:

$$\text{for } \varepsilon^* = \min \frac{(b - A \cdot x_B^*)_j}{(A \cdot d)_j}$$

one has: $A_{B'}(x_{B'}^* + \varepsilon^* \cdot d) = b_{B'}$

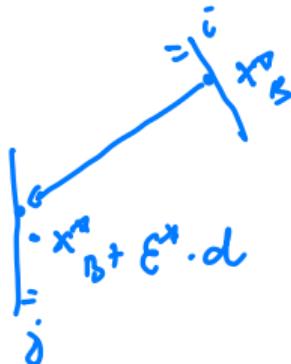
B' basis: $d \perp B' \setminus i \beta_j$.

$d \not\perp a_j \Rightarrow$

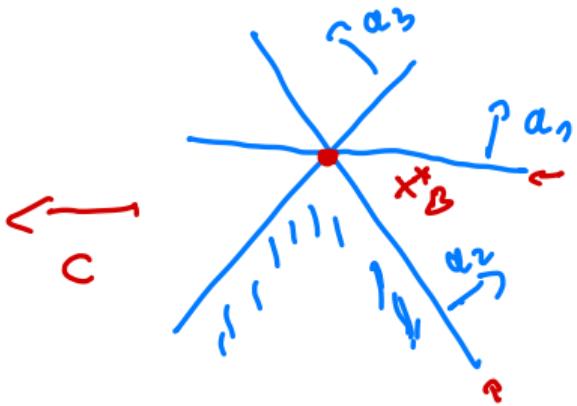
rows indexed by B' are

lin. indep. $\Rightarrow B'$ is feasible basis

By construction: $c^T(x_{B'}^* + \varepsilon^* \cdot d) \geq c^T(x_B^*)$.



How far can we move?



$$B = \{1, 2\}.$$

Suppose 2 lines

$$\mathbb{R}^2$$

$$A \cdot x_B^* - b = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

The simplex algorithm

Start with feasible basis B

while B is not optimal $(\exists i \in B: \lambda_i < 0 \text{ with } \lambda_B^T \cdot A_B = c^T)$

Let $i \in B$ be index with $\lambda_i < 0$

Compute $d \in \mathbb{R}^n$ with $a_j^T d = 0, j \in B \setminus \{i\}$ and $a_i^T d = -1$

Determine $K = \{k: 1 \leq k \leq m, a_k^T d > 0\}$

if $K = \emptyset$

assert LP unbounded

else

Let $j \in K$ index where $\min_{k \in K} (b_k - a_k^T x^*) / a_k^T d$ is attained

update $B := B \setminus \{i\} \cup \{j\}$

```

1 from sympy import *
2 A = Matrix([[1, 2, 2],
3             [2, 1, 2],
4             [2, 2, 1],
5             [-1, 0, 0],
6             [0, -1, 0],
7             [0, 0, -1]])
8
9 b = Matrix([10, 14, 11, 0, 0, 0])
10 c = Matrix([6, 14, 13])
11 r = Matrix([0, -1, 0])
12
13 B = [0, 1, 2]    d1,2,3 = B
14
15 A_B = A[B, :]
16 b_B = b[B, :]
17
18 x = A_B.solve(b_B) x1B
19 l = A_B.transpose().solve(c) l second component is negative.
20 d = A_B.transpose().solve(r) d

```

$$A_B \cdot x_B^* = b_B$$

$$x_B^* = A_B^{-1} \cdot b_B$$

Example

$$\lambda_B^\top \cdot A_B = c^\top \quad (A_B \cdot d) = \begin{pmatrix} 0 \\ -1 \\ 0 \end{pmatrix}$$

$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, b = \begin{pmatrix} 10 \\ 14 \\ 11 \\ 0 \\ 0 \\ 0 \end{pmatrix} \text{ and } c = \begin{pmatrix} 6 \\ 14 \\ 13 \end{pmatrix}$$

starting basis

$$B = \{1, 2, 3\}.$$

$$A_B = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix} \quad b_B = \begin{pmatrix} 10 \\ 14 \\ 11 \end{pmatrix} \text{ and } x_B^* = \begin{pmatrix} 4 \\ 0 \\ 3 \end{pmatrix}.$$

$$\lambda_B = \begin{pmatrix} \frac{36}{5} \\ -\frac{4}{5} \\ \frac{1}{5} \end{pmatrix}, d = \begin{pmatrix} -\frac{2}{5} \\ \frac{3}{5} \\ -\frac{2}{5} \end{pmatrix}.$$

$$A \cdot d = \begin{pmatrix} 0 \\ -1 \\ 0 \\ \frac{2}{5} \\ -\frac{3}{5} \\ \frac{2}{5} \end{pmatrix}, b - Ax^* = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 4 \\ 0 \\ 3 \end{pmatrix}.$$

2 rows basis and 6 unkns.

$$B' = \{1, 3, 6\}$$

Non-degenerate LPs

Definition

The LP $\max\{c^T x : x \in \mathbb{R}^n, Ax \leq b\}$ is **non-degenerate** if number of zero-components in $Ax - b \in \mathbb{R}^m$ is at most n for each $x \in \mathbb{R}^n$.

Termination non-degenerate case

Theorem

If the linear program is non-degenerate, then the simplex algorithm terminates.

Proof:

ϵ^*

x^*_3
 $x^*_0 + \epsilon^* \cdot d$

$B' \rightarrow B'$
strict improvement.

is always strictly positive.
otherwise ~~not~~ degenerate. (x^*_3 sat
all constraints in B and at least one
other one with equality.)

Never re-visit a basis. \Rightarrow Alg. terminates.

Smallest index rule

several choices for i and j

$$\lambda_i < 0$$

j index where $\min \frac{(Ax_B^* - b)_j}{(A \cdot d)_j}$

Start with feasible basis B

while B is not optimal

Compute $\lambda \in \mathbb{R}^n$ such that $\lambda^T A_B = c^T$

is attained.

Let $i^* \in B$ be the **smallest index** with $\lambda_i < 0$

Compute $d \in \mathbb{R}^n$ with $a_j^T d = 0, j \in B \setminus \{i^*\}$ and $a_{i^*}^T d = -1$

Determine $K = \{k: 1 \leq k \leq m, a_k^T d > 0\}$

if $K = \emptyset$

assert LP unbounded

else

Let j^* $\in K$ the **smallest index** where $\min_{k \in K} (b_k - a_k^T x^*) / a_k^T d$ is attained

update $B := B \setminus \{i^*\} \cup \{j^*\}$

Termination

Theorem

The simplex algorithm with the smallest index rule terminates.

Proof: Suppose not. Then B_0, \dots, B_g bases visited, with $B_0 = B_g$. Let j be the largest index that ever enters or leaves. Since $B_0 = B_g$ every index that leaves at some point enters and vice versa.

Let q be index on which j leaves $\xrightarrow{j \uparrow \downarrow} B_p$ $\lambda^{(p)} \lambda$ at B_p
 $- q$ ————— j enters. $\xrightarrow{j \uparrow \downarrow} B_q$ $d^{(q)} d$ at B_q

$$\underbrace{\lambda^{(p)T} \cdot A \cdot d^{(q)}}_{c^T} > 0$$

Let i be index in B_p s.t.

$$\lambda_i a_i^T \cdot d^{(q)} > 0$$

CASE 2: $i > j$

$i \in B_p$ and $i \in B_q$

But $a_i^T \cdot d^{(q)} = -1$ can't be 0 since i would have been

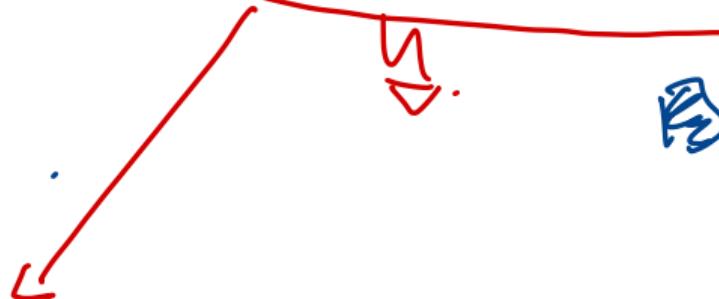
CASE 1: $i = j$ $\lambda_i < 0$ $a_i^T \cdot d^{(q)} > 0$ \downarrow

Then. $\lambda_i a_i^T d^{(q)} > 0 \downarrow$

if $i < j$

$$\lambda_i^{(q)} > 0$$

$\alpha_i^T \cdot d^{(q)} > 0$ not possible!



Remember $\varepsilon^* = 0$ during the whole cycle. If

$\alpha_i^T d^{(q)} > 0$, then i would enter

B9.

