The simplex algorithm
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Ag € RIBX" rows indexed by B and B = {2,3}, one has

bg € RIBl components indexed by B
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Feasible basis

Qows of Ag & Eg‘s o{«le'

Definifion
Anindexset B C {1,...,m} is a basis if |B] = n and Ag is non-singular. If in
addition x‘z = Ag]bB is feasible, then B is called a feasible basis.
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Feasible basis vs exireme point
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Feasible basis vs extireme point
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Optimal basis wax CcTx
Axclo

Definition
A basis B is called optimal if it is feasible and the unique A € R™ with
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Optimal basis vs. optimal solution

If B is an opfimal basis, then x* = AE] bg is an optimal solution of the linear
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Moving to an improving vertex 5 " R’
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How far can we move?
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How far can we move?




The simplex algorithm

Start with feasible basis B

while B is not optimal
Leti € Bbe index with \; < 0O
Compute d € R” with a/d =0, j € B\ {i}and a/d = -1
Determine K = {k: 1 <k<m ald > 0}

ifK=0
assert LP unbounded
else

Le’rge K index where mm(b;< — a}x*)/ald is attained
update B:= B\ {it U {é}
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from sympy import =*

A = Matrix([[1, 2, 2],
(2, 1, 21,
[2, 2, 11,
(-1, 0, 0],
o, -1, ol,
o, o, -111)

b = Matrix([10,14,11,0,0,0])
Matrix ([6,14,13])
r = Matrix ([0,-1,0])

B=10,1,21 dALY=H
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A_B = A[B,:]
b_B = b[B,:]

|
x = A_B.solve(b_B) * &

1 = A_B.transpose().solve(c) A\ 0“""’““'
= A_B.transpose().solve(r) g,
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Example

1 2 2 10
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2 2 1 11
A= 1 0 0 , b= 0 ondc:(}g)
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starting basis
B={1,2,3}.
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Non-degenerate LPs

Definition
The LP max{c'x: x € R", Ax < b} is non-degenerate if number of
zero-components in Ax — b € R™ is at most n for each x € R”.



Termination non-degenerate case

If the linear program is non-degenerate, then the simplex algorithm terminates.
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Smallest index rule s
’ B Asco
Start with feasible basis B 3 tnder Ll i M
while B is not optimal 0\11\9&
Compute A € R" such that ATAg = ¢’ 'S aMauned,

Let i* € B be the smallest index with A; < 0
Compute d € R” with a/d =0, j € B\ {i*} and a].d = -1
Determine K = {k: 1 <k <m, afd > 0}

ifK =10
assert LP unbounded
else

Let é,ie K the smallest index where kmiE(bk — ajx*)/ald is attained
—0 —_— €
update B := B\ {i*} U {é*}




Termination

The simplex algorithm with the smallest index rule terminates.
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