
The simplex algorithm
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Notation

Let B ✓ {1, . . . ,m}

AB 2 R|B|⇥n rows indexed by B

bB 2 R|B| components indexed by B
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Feasible basis

Definition
An index set B ✓ {1, . . . ,m} is a basis if |B| = n and AB is non-singular. If in
addition x⇤ = A�1

B bB is feasible, then B is called a feasible basis.
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Feasible basis vs extreme point

if P= 2Ax=b] member : WIP is verfex=>

subsystem Ax = B' <Ax=b
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Optimal basis

Definition
A basis B is called optimal if it is feasible and the unique � 2 Rm with

�TA = cT and �i = 0, i /2 B (3)

satisfies � > 0.
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Optimal basis vs. optimal solution

Theorem
If B is an optimal basis, then x⇤ = A�1

B bB is an optimal solution of the linear
program. B
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Moving to an improving vertex

d 2 Rn unique solution to

aT
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How far can we move? ↑
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How far can we move?

Bble basis: for S*= min -Axise
one has: Ai (x + 9+.d) = bi i
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How far can we move?
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The simplex algorithm

Start with feasible basis B
while B is not optimal

Let i 2 B be index with �i < 0
Compute d 2 Rn with aT

j d = 0, j 2 B \ {i} and aT
i d = �1

Determine K = {k : 1  k  m, aT
kd > 0}

if K = ;
assert LP unbounded

else
Let k 2 K index where min

k2K
(bk � aT

kx⇤)/aT
kd is attained

update B := B \ {i} [ {k}

( Die B : Disco with i .A= c)
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1 from sympy import *
2 A = Matrix ([[1, 2, 2],
3 [2, 1, 2],
4 [2, 2, 1],
5 [-1, 0, 0],
6 [0, -1, 0],
7 [0, 0, -1]])
8
9 b = Matrix ([10,14,11 ,0,0,0])

10 c = Matrix ([6 ,14 ,13])
11 r = Matrix ([0,-1,0])
12
13 B = [0,1,2]
14
15 A_B = A[B,:]
16 b_B = b[B,:]
17
18 x = A_B.solve(b_B)
19 l = A_B.transpose ().solve(c)
20 d = A_B.transpose ().solve(r)
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Non-degenerate LPs

Definition
The LP max{cTx : x 2 Rn, Ax  b} is non-degenerate if number of
zero-components in Ax � b 2 Rm is at most n for each x 2 Rn.



Termination non-degenerate case

Theorem
If the linear program is non-degenerate, then the simplex algorithm terminates.

Rof: 34 /
** is aways strictl positive .
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Smallest index rule

Start with feasible basis B
while B is not optimal

Compute � 2 Rn such that �TAB = cT
Let i⇤ 2 B be the smallest index with �i < 0
Compute d 2 Rn with aT

j d = 0, j 2 B \ {i⇤} and aT
i⇤d = �1

Determine K = {k : 1  k  m, aT
kd > 0}

if K = ;
assert LP unbounded

else
Let k⇤ 2 K the smallest index where min

k2K
(bk � aT

kx⇤)/aT
kd is attained

update B := B \ {i⇤} [ {k⇤}
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Termination

Theorem
The simplex algorithm with the smallest index rule terminates.
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