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Finding an initial feasible basis

Linear program has equivalent form

max{cTx : Ax  b, x > 0}. (4)

Split Ax  b as
A1x  b1 and A2x  b2
with b1 > 0 and b2 < 0.
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Duality

max{cTx : x 2 Rn, Ax  b},
(Primal)

min{bTy : y 2 Rm, ATy = c, y > 0}.

(Dual)
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Duality



Weak Duality

Theorem (Weak duality)
If x⇤ and y⇤ are primal and dual feasible solutions respectively, then
cTx⇤  bTy⇤.

In other words (P) = (D)





Strong duality

Theorem
If the primal linear program is feasible and bounded, then so is the dual linear
program. Furthermore in this case, both linear programs have an optimal
solution and the optimal values coincide.
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Dual of the Dual

min{bTy : y 2 Rm, ATy = c, y > 0}

TRANSFORT(D) into - Standad

(P) mox +.X
farm

Ax=b
interpartxa

(D)
CTX

DUAL ne

--
max-b . y ~ (-) min C. X-ct. Xz +O . As

A . y
= C

A
- 123 =

- b
- A T -

y = -C

↓xz, Is -

- Iy 0

A . X - - b



- min T-X
- min c. X

-

A . x= - b(u) A(- x) = b

max cT(-x)
er

A(X) = b

-
max f(x) substitute - x -> X

=Min -f(x)

max ci-X
ze

- min CT- X Axb
.

=max CT -x) Dud of Dude Primal. I



10 Minutes break for Retour Indicatif



Dual of the Dual

Corollary
If the dual linear program has an optimal solution, then so does the primal
linear program and the objective values coincide.



Table of possibilities



Further example

max cTx
Bx = b
Cx  d.

(Primal)

min bTy1 + dTy2
BTy1 +CTy2 = c

y2 > 0.
(Dual)





Zero sum games
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Row player: Chooses row i
Column player: Chooses column j



Rock – paper – scissors
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Mixed strategies

Definition
Let A 2 Rm⇥n define a two-player matrix game. A mixed strategy for the
row-player is a vector x 2 Rm

>0 with Pm
i=1 xi = 1. A mixed strategy for the

column player is a vector y 2 Rn
>0 with Pn

j=1 yi = 1.

E[Payo�] = xTAy . (5)



Example: Mixed strategy rock – paper – scissors



Weak duality

Lemma
Let A 2 Rm⇥n, then
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where X and Y denote the set of mixed row and column-strategies
respectively.



Minimax-Theorem

Theorem (von Neumann (1928))

max
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xTAy ,

where X and Y denote the set of mixed row and column-strategies
respectively.




