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Finding an initial feasible basis
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Duality




Weak Duality

Theorem (Weak duality)

If x* and y* are primal and dual feasible solutions respectively, then
cTx* < bly*,

Tw oW wovd$ CP) < CD)






Strong duality

Theorem

If the primal linear program is feasible and bounded, then so is the dual linear
program. Furthermore in this case, both linear programs have an opfimal
solution and the optimal values coincide.
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Dual of the Dual
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Dual of the Dual

Corollary

If the dual linear program has an optimal solution, then so does the primal
linear program and the objective values coincide.



Table of possibilities




Further example

max CIx min bTy; +d'y,
Bx = b BT)/] + CT)/Q = C
Cx < d. yo = 0.

(Primail) (Dual)






Zero sum games

Row player: Chooses row i
Column player: Chooses column j



Rock - paper - scissors




Deterministic strategies

max min max min
i j i



Mixed strategies

Definition
Let A € R™*" define a two-player matrix game. A mixed strategy for the
row-player is a vector x € Rg’o with 2,21 X; = 1. A mixed strategy for the

column player is a vector y € R2y with 337 y; = 1.

E[Payoff] = x Ay. 5)



Example: Mixed strategy rock - paper - scissors




Weak duality

Lemma

Let A € R, then

max min X’ Ay < min maxx’ Ay,
xeX yeY yeY xeX

where X and Y denote the set of mixed row and column-strategies
respectively.



Minimax-Theorem

Theorem (von Neumann (1928))

max min X" Ay = min maxx' Ay,
xXeX yeY yeY xeX

where X and Y denote the set of mixed row and column-strategies
respectively.






