
Linear, a�ne, conic and convex hulls
Let X ✓ Rn:

lin. hull(X) = {�1x1 + · · ·+ �txt | t 2 N0,
x1, . . . , xt 2 X , �1, . . . ,�t 2 R}

affine. hull(X) = {�1x1 + · · ·+ �txt | t 2 N+,

x1, . . . , xt 2 X ,
tX

i=1
�i = 1, �1, . . . ,�t 2 R}

cone(X) = {�1x1 + · · ·+ �txt | t 2 N0,
x1, . . . , xt 2 X , �1, . . . ,�t 2 R>0}

conv(X) = {�1x1 + · · ·+ �txt | t 2 N+,

x1, . . . , xt 2 X ,
tX

i=1
�i = 1, �1, . . . ,�t 2 R>0}
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Figure: The convex hull of 7 points in R2.



Figure: Two points with their convex hull on the left and their a�ne hull on the right.
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Figure: Two points with their conic hull



Linear and a�ne hulls

Theorem
Let X ✓ Rn and x0 2 X. One has

affine. hull(X) = x0 + lin. hull(X � x0),

where for u 2 Rn and V ✓ Rn, u + V denotes the set u + V = {u + v | v 2 V}.
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Convex hull is convex

Theorem
Let X ✓ Rn be a set of points. The convex hull, conv(X), of X is convex.
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Convex hull is minimal

Theorem
Let X ✓ Rn be a set of points. Each convex set K containing X also contains

conv(X).
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Corollary
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Cones

Definition
A set C ✓ Rn is a cone, if it is convex and for each c 2 C and each � 2 R>0
one has � · c 2 C.
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Analogous theorems for cones

Theorem
For any X ✓ Rn, the set cone(X) is a cone.

Theorem
Let X ✓ Rn be a set of points. Each cone containing X also contains cone(X).
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Carathéodory’s Theorem

Theorem
Let X ✓ Rn, then for each x 2 cone(X) there exists a set eX ✓ X of cardinality at

most n such that x 2 cone(eX). The vectors in eX are linearly independent.
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Bounded continuous functions

Theorem
Let X ✓ Rn be compact and f : X ! R be continuous. Then f is bounded and

there exist points x1, x2 2 X with f (x1) = sup{f (x) : x 2 X} and

f (x2) = inf{f (x) : x 2 X}.





Separation theorem

Theorem
Let K ✓ Rn be a closed convex set and x⇤ 2 Rn \ K, then there exists an

inequality aT x  � such that aTy < � holds for all y 2 K and aTx⇤ > �.
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Farkas’ Lemma – Version 1

Theorem (Farkas’ lemma)
Let A 2 Rm⇥n be a matrix and b 2 Rm be a vector. The system Ax = b, x > 0
has a solution if and only if for all � 2 Rm with �TA > 0 one has �Tb > 0.
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Farkas’ Lemma – Version 2

Theorem (Farkas’ lemma)
Let A 2 Rm⇥n be a matrix and b 2 Rm be a vector. The system Ax  b has a

solution if and only if for all � 2 Rm

>0 with �TA = 0 one has �Tb > 0.
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