Linear, affine, conic and convex hulls
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Figure: The convex hull of 7 points in R,



Figure: Two points with their convex hull on the left and their affine hull on the right.
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Figure: Two points with their conic hull



Linear and affine hulls Yo = 4 X¥e XE X3

Let X CR" and xg € X. One has

affine. hull(X) = Xg + lin. hull(X — Xxg),

where foru e R"and V C R"”,u+ V denotesthesetu+ V ={u+v |v e V}.
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Convex hull is convex
4 2

COWN )= { MXa k-4 >\-l—,x.\-,: 'lfé N+' Aq,.,, &20, oz,, ac=A _’)

Let X C R" be a set of points. The convex hull, conv(X), of X is convex.
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Convex hull is minimal

Theorem

Let X C R" be a set of points. Each convex set K confaining X also contains
conv(X).

K ewowwex



M-. 1o a.\wquw K ¥y €K Ol M., de20 wi¥

t S Aoz
= 2 NX &K

[

Tnduchon: =4 Foﬂpm F""w‘ X-LQ W

£
Q:‘ §_ }\C XU = >\4'X,4 t+ Z >\‘: XO =X :@—)4)
U=

~ 9
= 4 . =1
\Q A4z 0 (Pﬂ-a. ‘o\a ceduth o X & \/<, /, @-A1)

o Az i Z e & by swduckow,
odwwae:  X= AaxXse 4 Q-m) Z ('73\:_) K¢
. Hen e\ bla_

daf. of convexty @







Corollary

conv(X) = ﬂ K.

KDX
K convex



Cones

OLERVATION:  k CeR* v el ca¢ , do 0eC.
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Definition
Aset C C R"is a cone, if it is convex and for each ¢ € C and each A € Ry
onehas \-c e C.
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Theorem

Forany X C R", the set cone(X) is a cone.

Theorem
Let X C R" be a set of points. Each cone containing X also confains cone(X).

cone(X) = ﬂ C.
CDoX
Cisacone



Carqthgodory’s Theorem

Theorem

Let X C R", then for each x € cone(X) there exists a set X C X of cardinality at
most n such that x € cone(X). The vectors in X are linearly independent.
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Bounded continuous functions

Theorem

Let X C R" be compactand f : X — R be confinuous. Then f is bounded and
there exist points xy,xo € X with f(xy) = sup{f(x): x € X} and

f(x2) = inf{f(x): x € X}.







Separation theorem

Theorem
Let K C R" be a closed convex set and x* € R" \ K, then there exists an

inequality a’x < g such that a’y < 8 holds for all y € K and a’x* > 8.
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Farkas’ Lemma - Version 1

Theorem (Farkas’ lemnma)

Let A € RN be a matrix and b € R™ be a vector. The system Ax = b, x >0
has a solution if and only if for all A € R™ with ATA > 0 one has A'b > 0.
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Farkas’ Lemma - Version 2

Theorem (Farkas’ lemmma)

Let A € RN be a matrix and b € R™ be a vector. The system Ax < b has a
solution if and only if for all A € Ry with \TA = 0 one has A’b > 0.
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