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Polyhedra

Definition

A polyhedron P ✓ Rn is a set of the form P = {x 2 Rn : Ax  b} for some

A 2 Rm⇥n and some b 2 Rm.
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Convex sets

Definition

A set K ✓ Rn is convex if for each u, v 2 K and � 2 [0, 1] the point �u + (1� �)v
is also contained in K .
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Halfspaces

Definition

A halfspace is a set of the form

{x 2 Rn : aT
x  �}.

A hyperplane is a set of the form

{x 2 Rn : aT
x = �}.
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Halfspaces are convex

Lemma

A half-space is convex.
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Intersections of convex sets

Lemma

Let I be an index set and Ci ✓ Rn be convex sets for each i 2 I, then \i2ICi is a

convex set.

Corollary

A polyhedron is a convex set.
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Valid inequalities

Definition

aTx  � is valid for K ✓ Rn if for each

x⇤ 2 K :

a
T
x
⇤  �

If in addition (aTx = �) \ K 6= ;, then
aTx  � is a supporting inequality and

aTx = � is a supporting hyperplane
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Extreme points

Definition

Let K ✓ Rn be convex. x⇤ 2 K is

extreme point or vertex of K if there

exists a valid inequality aTx  � of K

such that

{x⇤} = K \ {x 2 Rn : aT
x = �}.
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Vertices of polyhedra – algebraic
characterization

Theorem

Let P = {x 2 Rn : Ax  b} be a polyhedron. x⇤ 2 P is extreme point i� there is

sub-system A0x  b0 of Ax  b s.t.

i) x⇤ satisfies all inequalities of A0x  b0 with equality.

ii) A0 has n rows and A0 is non-singular.
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Optimal solutions and vertices

Theorem

If a linear program max{cTx : x 2 Rn, Ax  b} is feasible and bounded and if

rank(A) = n, then the linear program has an optimal solution that is an

extreme point.
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Bounded LP has optimal solution

Corollary

A linear program max{cTx : x 2 Rn, Ax  b} which is feasible and bounded

has an optimal solution.

Prof: Ib: X = x+-x- * X EIR
n

Malaix

x+, x 20 I start
-

De-WRITE : max CT. X or max CT(x+-x)
-

AX= B

*** IE]



New LP has full col . rank constraint matrix
.
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A first (ine�cient) algorithm

Given: max{cT
x : x 2 Rn, Ax  b} with rank(A) = n.

• Initialize M = ;
• Enumerate all sets of n row-vectors of A that are basis of Rn

• Solve A0x = b0 for corresponding sub-system A0x  b0 of Ax  b.

• If for solution x⇤: Ax⇤  b then

M = M + x⇤

• Output element of M with largest objective function value

i ~~- Ax= y

enumeration costs (i) exponential .

Running time : At1
man
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A first (ine�cient) algorithm

Theorem

If LP is bounded then algorithm above computes optimal solution.

We will see ...

... we can do much better.


