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Polyhedra

Definifion
A polyhedron P C R" is a set of the form P = {x € R": Ax < b} for some

A ¢ R™" and some b € R,
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Convex sets

Definition

A set K C R is convex if foreach u,v € K and X € [0, 1] the point Au + (1 — \)v
is also contained in K.
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Halfspaces

Definition
A halfspace is a set of the form

Qevew: ac®", (Lc [ {x eR": a'x < 3}. f 1!
A hyperplane is a set of the form

{xeR": a'x =g}



Halfspaces are convex “\
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Lemma

A half-space is convex.
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Intersections of convex sets

Lemma

Let | be an index set and C; C R" be convex sets for each i € I, then N, C; is a
convex set. Exeywcge !

Corollary

A polyhedron is a convex set.
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Valid inequalities

Definition
a’x < Bis valid for K C R" if for each
x* e K:

a'x*<p
If in addition (a’x = g) N K # B, then
a’x < B is a supporting inequality and
a’x = g is a supporting hyperplane




Extreme points

Definition

Let K C R" be convex. x* € K is
extreme point or vertex of K if there
exists a valid inequality a’x < 8 of K
such that

(X} =Kn{xeR": a'x=p}.
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Vertices of polyhedra - algebraic
characterization

Theorem

Let P ={x € R": Ax < b} be a polyhedron. x* € P is extreme point iff there is
sub-system A’x < b’ of Ax < b s.t.

i) x* satisfies all inequalities of A'’x < b’ with equality.
iy A" has nrows and A’ is non-singular.
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Optimal solutions and vertices  (|4| «- \%
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Theorem

If a linear program max{c’x: x € R", Ax < b} is feasible and bounded and if
rank(A) = n, then the linear program has an optimal solution that is an

extreme point.
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Bounded LP has optimal solution

Corollary
A linear program max{c’x : x € R", Ax < b} which is feasible and bounded
has an optimal solution.
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A fi |neff|C|ent algorithm .
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Given: max{c'x: x e R", Ax <b} with :

e |nitialize M = ()
e Enumerate all sets of n row-vectors of A that are basis of R"

® Solve A’x = b’ for corresponding sub-system A’x < b’ of Ax < b.
e |f for solution x*: Ax* < b then
M =M + x*

e Output element of M with largest objective function value
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A first (inefficient) algorithm

If LP is bounded then algorithm above computes optimal solution.

We will see ...

... we can do much better.




