

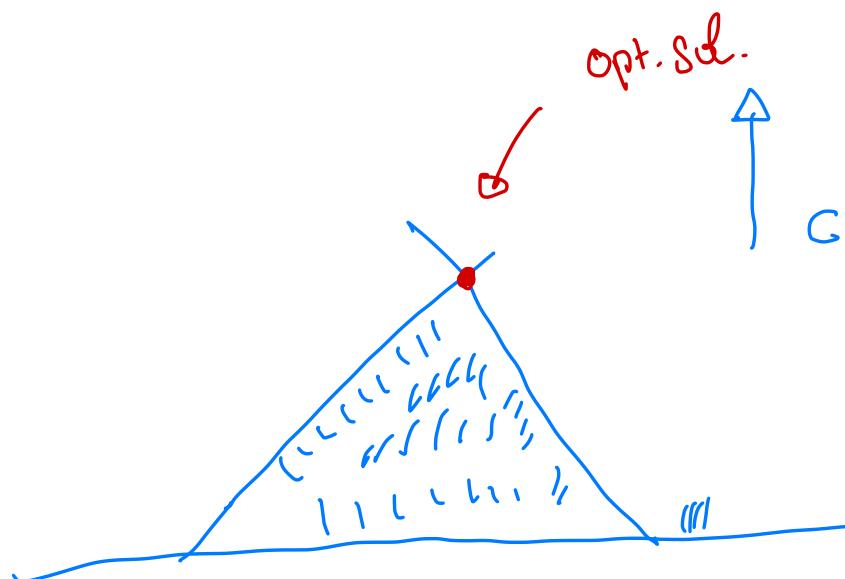
Recap:

Linear program

$$\max c^T \cdot x$$

subject to: $Ax \leq b$

$A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$



Today:

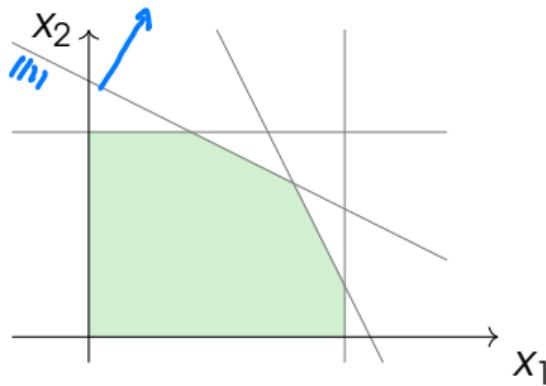
- If LP has corners and is bounded
 \Rightarrow ~~exists~~ \exists opt. sol that is a "corner"
- # corners is finite
- enumeration
 \Rightarrow First very slow algorithm to solve LP.

Polyhedra

Definition

A polyhedron $P \subseteq \mathbb{R}^n$ is a set of the form $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ for some $A \in \mathbb{R}^{m \times n}$ and some $b \in \mathbb{R}^m$.

$$A = \begin{pmatrix} 3 & 6 \\ 8 & 4 \\ 1 & 0 \\ 0 & 1 \\ -1 & 0 \\ 0 & -1 \end{pmatrix}, \quad b = \begin{pmatrix} 30 \\ 44 \\ 5 \\ 4 \\ 0 \\ 0 \end{pmatrix} :$$



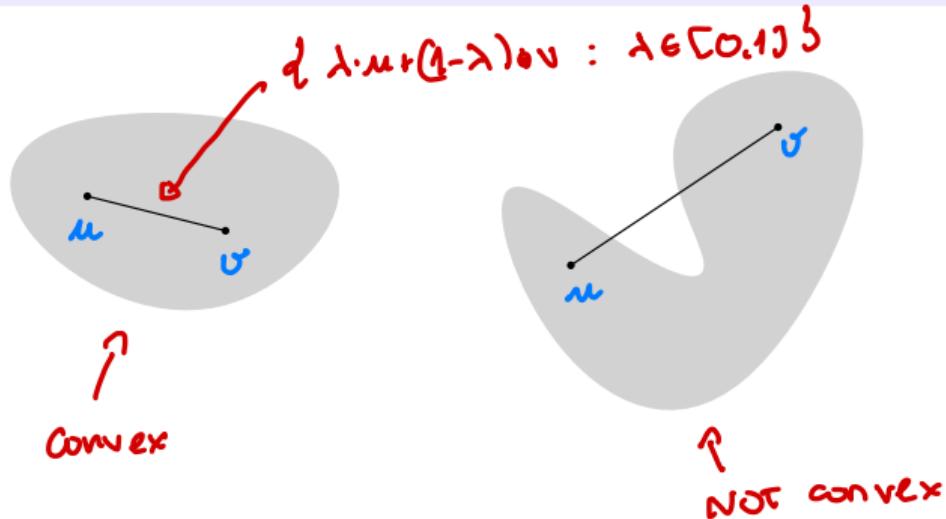
$$Ax \leq b$$

Set of feasible solutions of previous example
«Soft DRINK production»

Convex sets

Definition

A set $K \subseteq \mathbb{R}^n$ is **convex** if for each $u, v \in K$ and $\lambda \in [0, 1]$ the point $\lambda u + (1 - \lambda)v$ is also contained in K .



Halfspaces

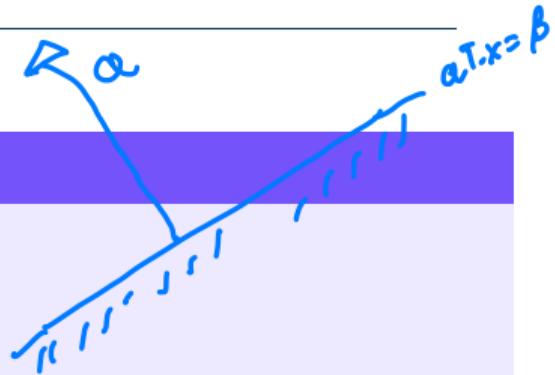
Definition

A **halfspace** is a set of the form

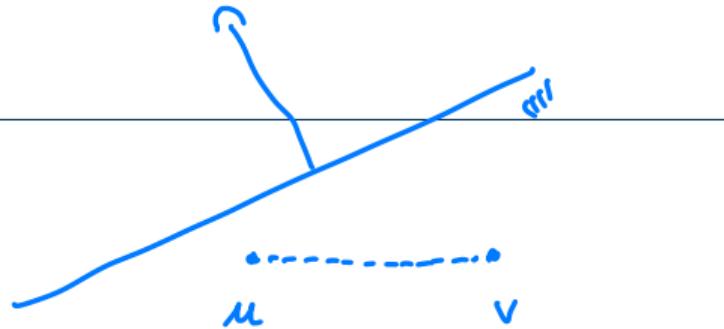
given: $a \in \mathbb{R}^n$, $\beta \in \mathbb{R}$. $\{x \in \mathbb{R}^n : a^T x \leq \beta\}.$

A **hyperplane** is a set of the form

$$\{x \in \mathbb{R}^n : a^T x = \beta\}.$$



Halfspaces are convex



Lemma

A half-space is convex.

proof: Let $\alpha \in \mathbb{R}^n$, $\beta \in \mathbb{R}$ define $\{x \in \mathbb{R}^n : \alpha^T \cdot x \leq \beta\}$

Let $u \in \mathbb{R}^n$, $v \in \mathbb{R}^n$ s.t. $\alpha^T \cdot u \leq \beta$, $\alpha^T \cdot v \leq \beta$ (' u, v in half-space)

$$\begin{aligned} \lambda \in [0,1]. \quad & \alpha^T (\lambda \cdot u + (1-\lambda) \cdot v) \\ &= \lambda \cdot \alpha^T \cdot u \overset{\leq \beta}{\underset{\text{S1}}{\textcolor{red}{\approx}}} + (1-\lambda) \cdot \alpha^T \cdot v \overset{\leq \beta}{\underset{\text{S2}}{\textcolor{red}{\approx}}} \leq \lambda \cdot \beta + (1-\lambda) \cdot \beta = \beta \Rightarrow \lambda \cdot u + (1-\lambda) \cdot v \text{ in halfspace.} \end{aligned}$$

Intersections of convex sets

Lemma

Let I be an index set and $C_i \subseteq \mathbb{R}^n$ be convex sets for each $i \in I$, then $\cap_{i \in I} C_i$ is a convex set. **Exercise !**

Corollary

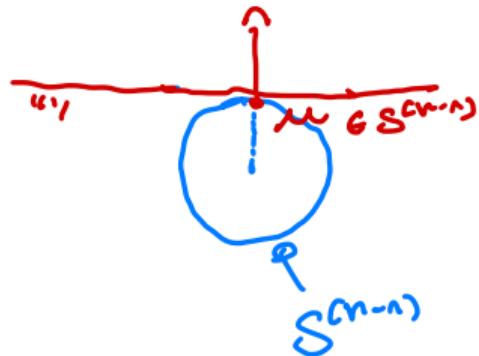
A polyhedron is a convex set.

Polyhedron is intersection of half-spaces. \Rightarrow convex.

Exercise:

$$B = \{x \in \mathbb{R}^n : \|x\|_2 \leq 1\}.$$

B is intersection of (infinite) ~~one~~ set of half-spaces.



$$d x \in \mathbb{R}^n : u^T \cdot x \leq 1 \}$$

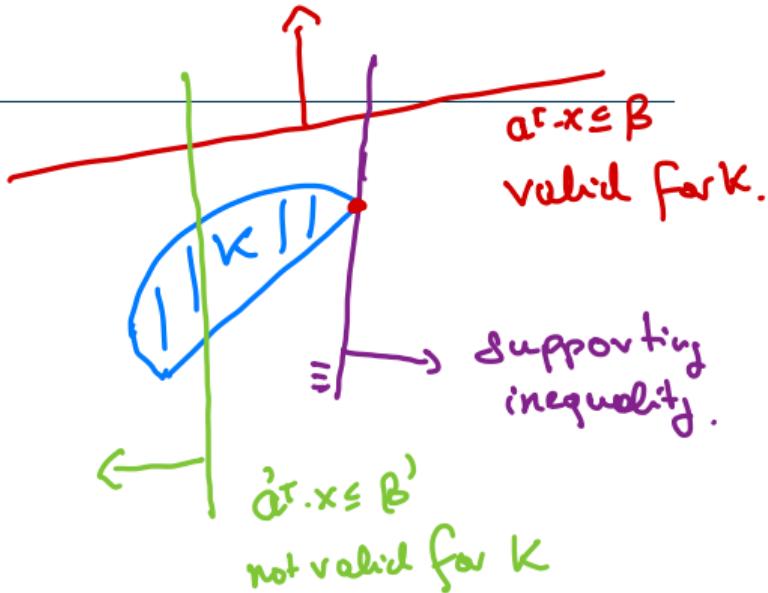
Valid inequalities

Definition

$a^T x \leq \beta$ is **valid** for $K \subseteq \mathbb{R}^n$ if for each $x^* \in K$:

$$a^T x^* \leq \beta$$

If in addition $(a^T x = \beta) \cap K \neq \emptyset$, then $a^T x \leq \beta$ is a **supporting inequality** and $a^T x = \beta$ is a **supporting hyperplane**

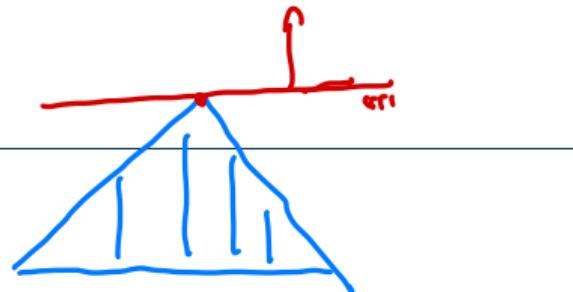
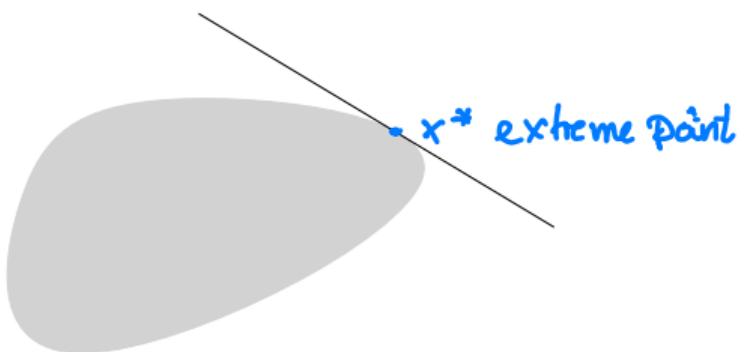


Extreme points

Definition

Let $K \subseteq \mathbb{R}^n$ be convex. $x^* \in K$ is **extreme point** or **vertex** of K if there exists a valid inequality $a^T x \leq \beta$ of K such that

$$\{x^*\} = K \cap \{x \in \mathbb{R}^n : a^T x = \beta\}.$$



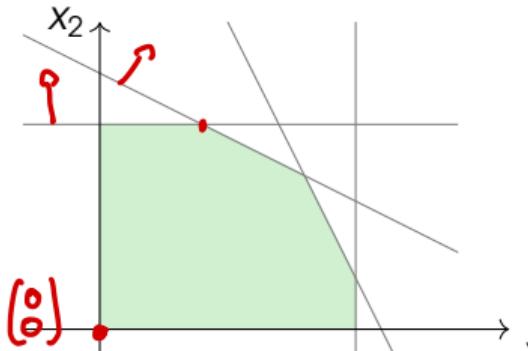
Vertices of polyhedra – algebraic characterization

Theorem

Let $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ be a polyhedron. $x^* \in P$ is extreme point iff there is sub-system $A'x \leq b'$ of $Ax \leq b$ s.t.

- i) x^* satisfies all inequalities of $A'x \leq b'$ with equality.
- ii) A' has n rows and A' is non-singular.

$$A = \begin{pmatrix} 3 & 6 \\ 8 & 4 \\ 1 & 0 \\ 0 & 1 \\ -1 & 0 \\ 0 & -1 \end{pmatrix}, \quad b = \begin{pmatrix} 30 \\ 44 \\ 5 \\ 4 \\ 0 \\ 0 \end{pmatrix} :$$



proof: " \Rightarrow " Let x^* satisfy $Ax \leq b$ and
be an extreme point of $P = \{x : Ax \leq b\}$.

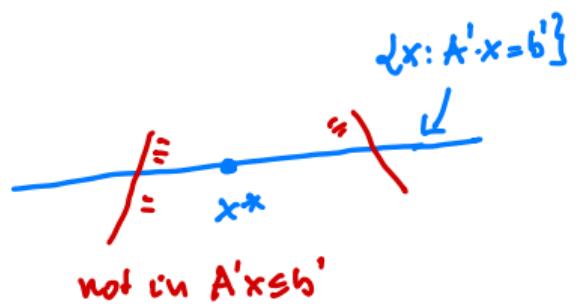
Let $A'x \leq b'$ be sub-system of $Ax \leq b$ with $A'x^* = b'$

to show: $\text{rank}(A') = n$. Let us suppose that $\text{rank}(A') < n$.

Then $\exists d \in \mathbb{R}^n \setminus \{0\}$ s.t. $A' \cdot d = 0$

$\forall \varepsilon > 0$: $A'(x^* \pm \varepsilon \cdot d) = b'$

$\Rightarrow \exists \varepsilon > 0$ s.t. $(x^* \pm \varepsilon \cdot d) \in P$

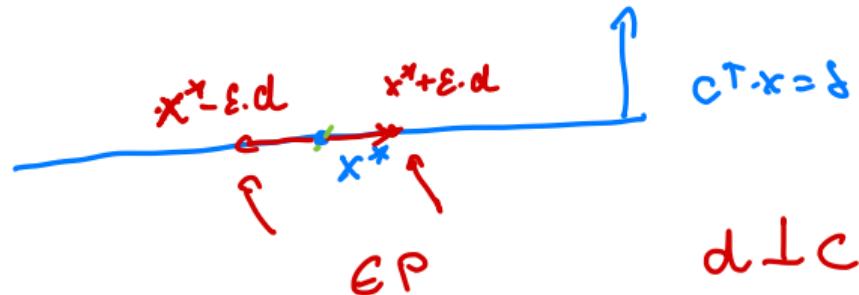


It remains to be shown: x^* is not an extreme point.

To this end: let $\overset{\uparrow}{x^*}$ $c^T x \leq \delta$

be a valid inequality
for P

to show: $(c^T \cdot x = \delta) \cap P \neq \{x^*\}$



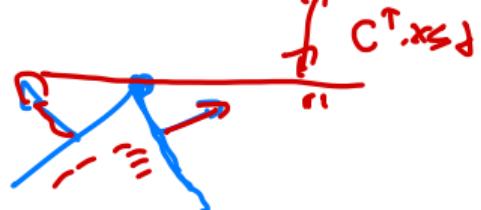
$d \perp c$ since $c^T \cdot x \leq \delta$ is valid for P and $x^* \pm \varepsilon \cdot d \in P$

\Leftarrow put $x^* \in P$ and $A' x \leq b'$

sub-system of $Ax \leq b$ satisfied by x^* with equality and

suppose $A' \in \mathbb{R}^{m \times n} \in \mathbb{R}^{m \times n}$ $\text{rank}(A') = n$ to show: x^* is

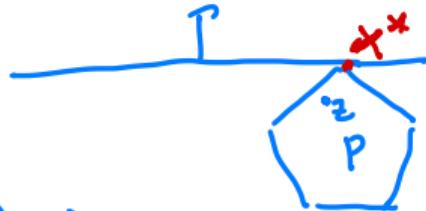
extreme point



$$\leq' \quad A'x \leq b' \quad \begin{cases} Ax \leq b \\ \text{sub-system.} \end{cases}$$

$$\begin{aligned} \text{i)} \quad A'x^* &= b' \\ \text{ii)} \quad A' \in \mathbb{R}^{k \times n}, \\ \text{iii)} \quad \text{rank}(A') &= n. \end{aligned}$$

$$\text{construct} \quad C^T x \leq \delta$$



$$\begin{aligned} C^T &= \mathbf{1}^T \cdot A' & \rightarrow C^T x \leq \delta \text{ is} \\ \delta &= \mathbf{1}^T \cdot b' & \text{valid for } P \quad \underline{\text{also:}} \quad C^T x^* = \delta \end{aligned}$$

consider now: $z \neq x^* \in P$. to show: $C^T z < \delta$.

$$\begin{aligned} A' \cdot z &\leq b' \quad \Rightarrow \exists y \in \mathbb{R}_{\geq 0}^k, y \neq 0 \\ &\neq \quad \text{such that } A' \cdot z = b' - y \end{aligned}$$

Now:

$$C^T \cdot z = \mathbf{1}^T \cdot A' \cdot z = \mathbf{1}^T (b' - y) = \underbrace{\mathbf{1}^T \cdot b'}_{=\delta} - \underbrace{\mathbf{1}^T \cdot y}_{\geq 0} < \delta \quad \blacksquare$$

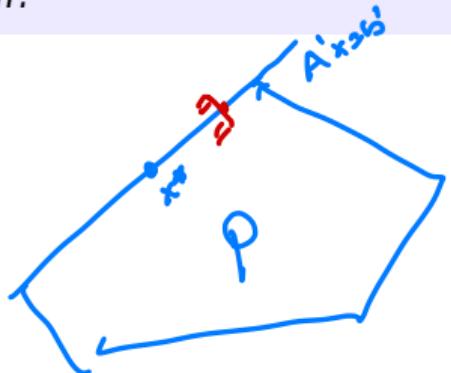
Optimal solutions and vertices

$$n \left\{ \begin{array}{l} \rightarrow \\ \rightarrow \\ \rightarrow \end{array} \right\} \boxed{A} \quad x \leq \boxed{b}$$
$$A'x = b'$$

Bounded: $\exists M \in \mathbb{R}$ s.t. $C^T x \leq M \quad \forall x \in P$

Theorem

If a linear program $\max\{C^T x : x \in \mathbb{R}^n, Ax \leq b\}$ is feasible and bounded and if $\text{rank}(A) = n$, then the linear program has an optimal solution that is an extreme point.

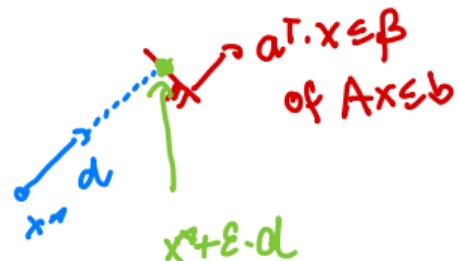


$$P = \{x \in \mathbb{R}^n : Ax \leq b\}.$$

Proof: Let $\dim(x^*) = \text{rank}(A')$ where $A'x \leq b'$ is sub-
system of $Ax \leq b$ with $A'x^* = b'$. We now show: if $\dim(x^*) < n$
(i.e. x^* is not a vertex), then \exists feasible $z \in P$ s.t.

- i) $\dim(z) > \dim(x^*)$
- ii) $C^T z \geq C^T x^*$

Case 1: $C^T d \neq 0$ w.l.o.g. $C^T d > 0$ (otherwise $d := -d$)



Suppose $\dim(x^*) < n$.

then $\exists d \in \mathbb{R}^n \setminus \{0\}$ with $A'd = 0$

Let $\epsilon > 0$ be maximal s.t.

$x^* + \epsilon \cdot d \in P$. Let $a^T \cdot x \leq \beta$ be inequality
of $(Ax \leq b) \setminus (A'x \leq b')$ with $a^T(x^* + \epsilon \cdot d) = \beta$

then: a lin indep of rows of A' (otherwise $a^T \cdot d = 0 \nabla$)

$\dim(x^* + \varepsilon \cdot d) > \dim(x^*)$ $x^* + \varepsilon \cdot d \in P$ and

$C^T(x^* + \varepsilon \cdot d) \geq C^T x^*.$

CASE 2: $C^T \cdot d = 0$

$A \cdot d \neq 0$ because $\text{rank}(A) = n$

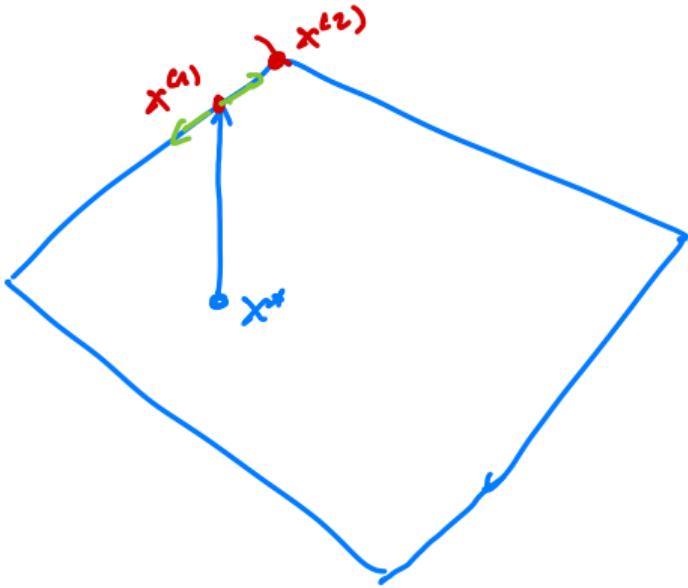
\Rightarrow 2 inequally $a^T \cdot x \leq b$ of $Ax \leq b$ with $a^T \cdot d \neq 0$

w.l.g. $a^T \cdot d > 0$. Let ε^* be max s.t. $x^* + \varepsilon^* \cdot d \in P$.

Similar argument to CASE 1

$\Rightarrow \dim(x^* + \varepsilon^* \cdot d) > \dim(x^*)$ and $C^T(x^* + \varepsilon^* \cdot d) = C^T x^*$ \blacksquare

Illustration in \mathbb{R}^2



$\uparrow c$
Beginning $(A'x \leq b') = \emptyset$

$$\text{dim}(x^{(a)}) = 1 \rightarrow \text{dim}(x^*) = 0$$

Bounded LP has optimal solution

Corollary

A linear program $\max\{c^T x : x \in \mathbb{R}^n, Ax \leq b\}$ which is feasible and bounded has an optimal solution.

Proof:

Trick:

$$x = x^+ - x^-$$

$$x^+, x^- \in \mathbb{R}^n$$

$$x^+, x^- \geq 0$$

constraint
matrix

$$\begin{matrix} & & & x^+ & x^- \\ \hline & & & 1 & -1 \end{matrix}$$

Re-write:

$$\max c^T x$$

$$Ax \leq b$$

$$\Leftrightarrow \max c^T (x^+ - x^-)$$

$$A(x^+ - x^-) \leq b$$

$$x^+ \geq 0, x^- \geq 0$$

$$\left\{ \begin{array}{ccc} A & 0 & \\ 0 & -A & \\ -I & -I & \end{array} \right\}$$

New LP has full col. rank constraint matrix.

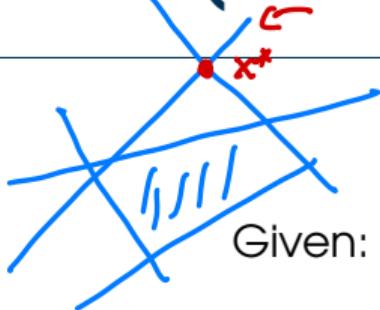
Construct

Previous thm: $\forall x^* \text{ feasible} \implies \text{vertex } z \text{ with.}$

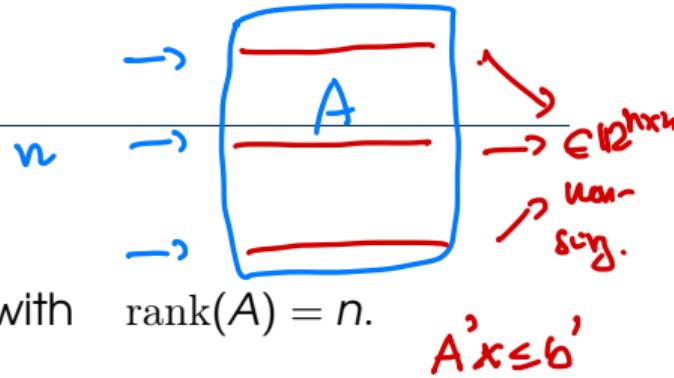
Obj. function value at least as good.

\Rightarrow LP has optimal solution.

A first (inefficient) algorithm



Given: $\max\{c^T x : x \in \mathbb{R}^n, Ax \leq b\}$ with $\text{rank}(A) = n$.



- Initialize $M = \emptyset$
- Enumerate all sets of n row-vectors of A that are basis of \mathbb{R}^n
 - Solve $A'x = b'$ for corresponding sub-system $A'x \leq b'$ of $Ax \leq b$.
 - If for solution x^* : $Ax^* \leq b$ then
 $M = M + x^*$
- Output element of M with largest objective function value

Running time: $A \in \mathbb{R}^{m,n}$ enumeration costs $\binom{m}{n}$ exponential.

A first (inefficient) algorithm

Theorem

If LP is bounded then algorithm above computes optimal solution.

We will see ...

... we can do much better.