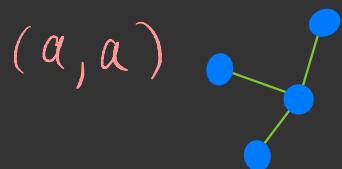


Number of unlabeled
trees.

By the previous video lecture:

there are $4^2 = 16$ trees on 4 labeled vertices

What about unlabeled trees (isomorphism classes)?



The number of isomorphism classes is only 2.

There is no explicit formula for the number of unlabeled trees with n vertices.

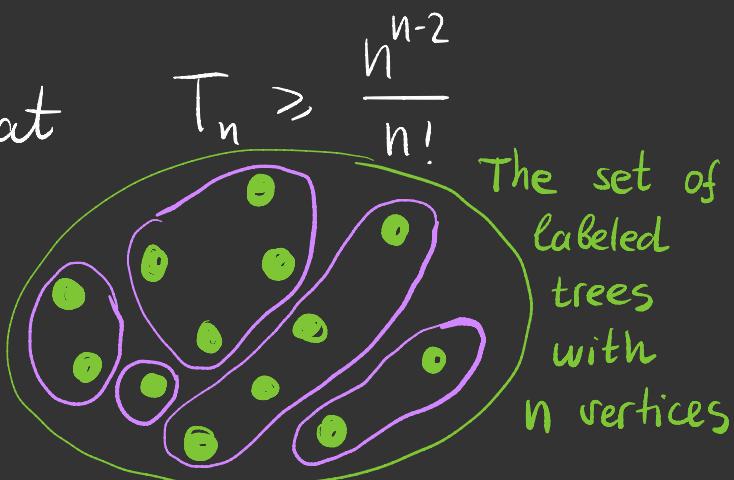
Theorem: Let T_n be the number of unlabeled trees with n vertices. Then

$$2^n \leq \frac{n^{n-2}}{n!} \leq T_n \leq 4^{n-1}$$

for $n > 30$

Proof: First we prove that

$$T_n \geq \frac{|\text{Labeled trees}|}{\text{maximal possible number of trees in one equivalence class}}$$



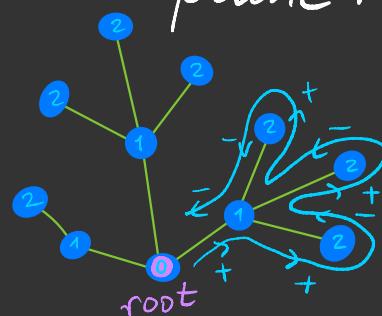
The number of trees in one equivalence class is $n!$

Now we show that $T^n \leq 4^n$

Take an unlabeled tree T with n vertices.

Choose one vertex of T and call it a root

Embed T into plane:



We start from the root and go counterclockwise around the tree and write

$+$ if the distance to the root increases

$-$ if the distance to the root decreases

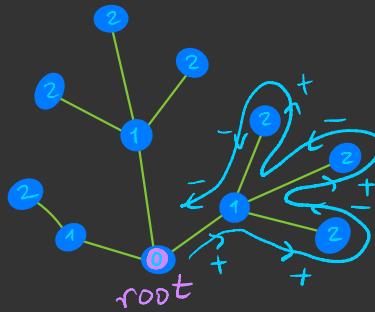
2^{n-2}

At the end of our journey we obtain a sequence in $\{+, -\}$

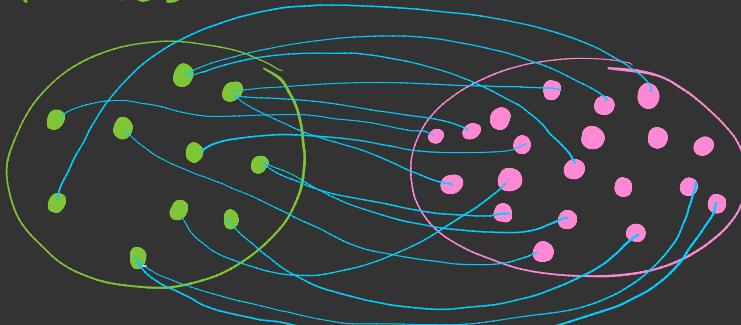
Important:

unlabeled tree can be
uniquely reconstructed
from the sequence.

The set of unlabeled trees



The set $\{+, -\}^{2n-2}$



- Each tree corresponds to at least one and possibly more sequences
- Each sequence corresponds to only one (unlabeled) tree
- Some sequences do not correspond to any tree

\Rightarrow number of unlabeled trees \leq number of sequences $= 4^{n-1}$ \blacksquare

Remark: A difficult result of Otter (1948) says that the number of unlabeled trees with n vertices is

$$\sim (0.5349\dots) \cdot \bar{n}^{5/2} \cdot (2.9557\dots)^n$$