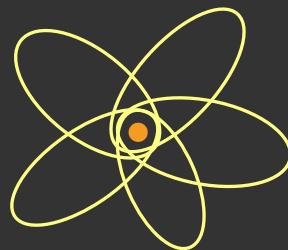


Erdős - Ko - Rado

or Sunflower



theorem

Definition: A family \mathcal{F} of sets is **intersecting** if for all $A, B \in \mathcal{F}$, $A \cap B \neq \emptyset$.

Theorem (Erdős - Ko - Rado)

If $|X| = n$, $n \geq 2k$ and \mathcal{F} is an intersecting family of k -element subsets of X , then

$$|\mathcal{F}| \leq \binom{n-1}{k-1}.$$

Remark: This Bound is tight.

It is easy to construct an intersecting family \mathcal{F} of k -element subsets of cardinality $|\mathcal{F}| = \binom{n-1}{k-1}$

Lemma: Consider $X = \{0, 1, \dots, n-1\}$ with addition modulo n and define

$$A_s = \{s, s+1, \dots, s+k-1\} \subseteq X \text{ for } 0 \leq s < n.$$

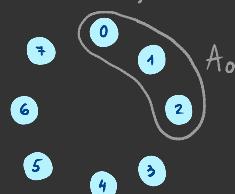
Then for $n \geq 2k$ any intersecting family

$\mathcal{F} \subseteq \binom{X}{k}$ contains at most k of the sets A_s

Proof of the lemma:

Without loss of generality, we may assume that $A_0 \in \mathcal{F}$.

Example: $n=8, k=3$



A set A_s intersects with A_0 only for $s=0$

or $s \in \{1, \dots, k-1, -1, \dots, -k+1\} \pmod{n}$.

We can devide these numbers into pairs

$$(j, j-k), \quad j = 1, \dots, k-1.$$

Note that $A_j \cap A_{j-k} = \emptyset$. Therefore, only one of these two sets can be contained in \mathcal{F} . This proves the lemma \blacksquare

Proof of the theorem:

We assume that $X = \{0, 1, \dots, n-1\}$ and $\mathcal{F} \subseteq \binom{X}{k}$ is an intersecting family.

For a permutation $\sigma: X \rightarrow X$, we define

$$\sigma(A_s) = \{\sigma(s), \sigma(s+1), \dots, \sigma(s+k-1)\},$$

addition again modulo n .

The lemma implies that, if we choose random s and σ independently and uniformly

(what is the underlying probability space?)

$$P[\sigma(A_s) \in \mathcal{F}] \leq \frac{k}{n}$$

This choice of $\sigma(A_s)$ is equivalent to a random choice of k -element subset of X .

Therefore

$$P(\sigma(A_s) \in \mathcal{F}) = \frac{|\mathcal{F}|}{{n \choose k}}.$$

Now we estimate

$$|\mathcal{F}| = {n \choose k} \cdot P(\sigma(A_s) \in \mathcal{F}) \leq {n \choose k} \frac{k}{n} = {n-1 \choose k-1}.$$

This finishes the proof of the theorem