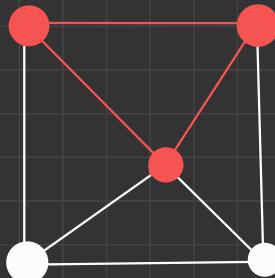


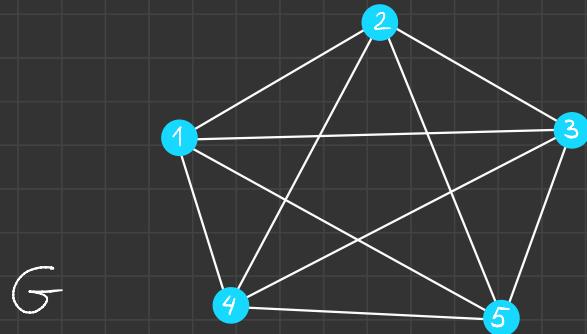
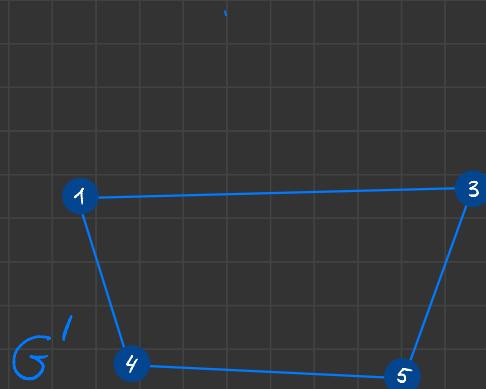
Subgraphs
vs

Induced subgraphs



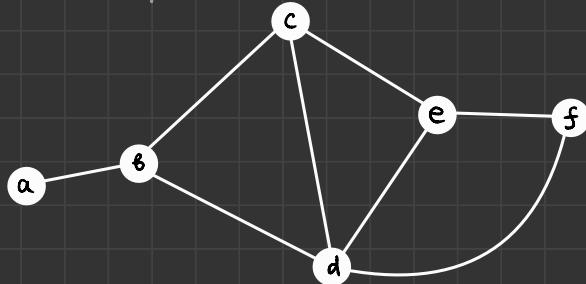
Definition: A subgraph of a graph
 $G = (V, E)$ is a graph $G' = (V', E')$
such that $V' \subseteq V$ and $E' \subseteq E$

Example:



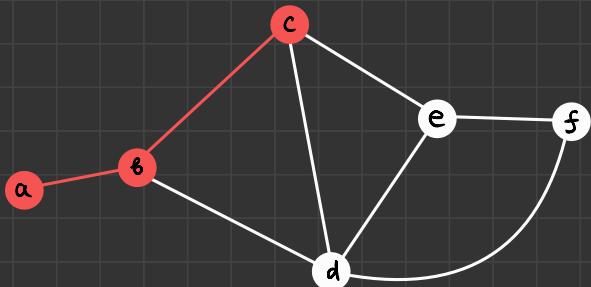
Definition: Graph $G' = (V', E')$ is an induced subgraph of $G = (V, E)$ if $V' \subseteq V$ and $E' = E \cap \binom{V'}{2}$

Example :



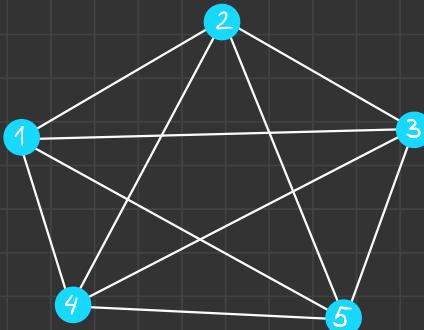
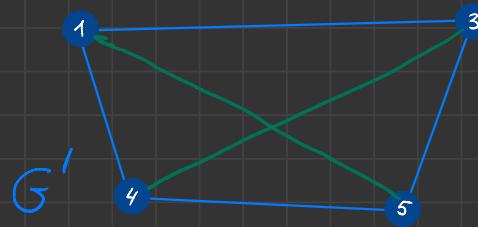
$$V = \{a, b, c, d, e, f\}$$

$$V' = \{a, b, c\} \Rightarrow E' = \{\{a, b\}, \{b, c\}\}$$



Example:

G



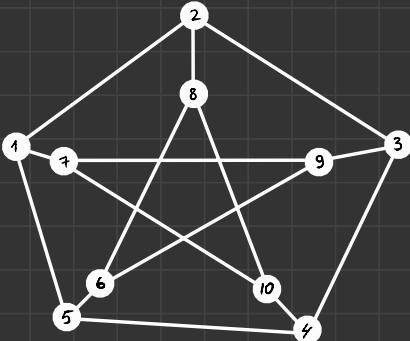
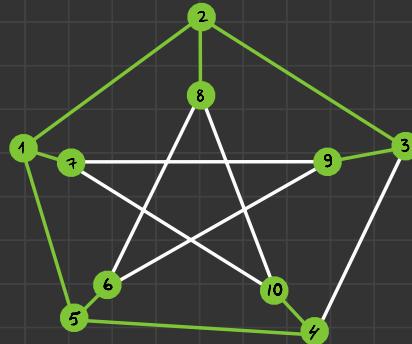
G'' is an induced
subgraph of G

Definition: let $G = (V, E)$ be a graph.

An arbitrary tree of the form (V, E') , where $E' \subseteq E$, is called a **spanning tree** of the graph G

So a spanning tree is a subgraph of G that is a tree and contains all vertices of G

Example:



Lemma: Every connected graph contains a spanning tree.

Proof: Let $G = (V, E)$ be a connected graph.

We construct a spanning tree of G by the following algorithm:

- 1 Start with an empty subgraph $T = \emptyset$
- 2 Pick an edge $e \in E$ such that $e \notin E(T)$
- 3 Consider the new subgraph T' obtained from T by adding e

i.e. $V(T') = V(T) \cup \{v_1, v_2\}$ $E(T') = E(T) \cup \{e\}$

- 4 If T' does not contain cycles set $T := T'$
- 5 If there is no edge $e \in E$ s.t 2 and 3 hold then stop.

Now we check that the output of this algorithm is a spanning tree of G .

- ① T contains all vertices of G
otherwise we can add one more edge
- ② T is connected
otherwise we can add one more edge
- ③ T contains no cycles
by Step 4

$\Rightarrow T$ is a spanning tree \blacksquare