

Random variables
and their expectations

Definition: Let (Ω, P) be a finite probability space. A random variable on Ω is any map $f: \Omega \rightarrow \mathbb{R}$.

Example 1: Let $(\Omega = \{0, 1\}^n, P(A) = \frac{|A|}{|\Omega|})$ - be the probability space of n -term random sequences of 1's and 0's.

$f_1(w) :=$ number of 1s in a random sequence
 $w = (w_1, \dots, w_n) \quad w_i \in \{1, 0\}$.

Example 2: Number of fixed points in a random permutation

Example 3: Number of triangles in a random graph.

Definition: let (Ω, P) be a finite probability space, and let f be a random variable on it.

The expectation of f is a real number $E(f)$ defined by the formula:

$$E(f) := \sum_{\omega \in \Omega} P(\{\omega\}) \cdot f(\omega).$$

Example: let f_1 be the number of 1's in a random n -term sequence of 1's and 0's. ((Ω, P) defined on a previous slide)

$$E(f_1) := \sum_{\omega \in \{0,1\}^n} f_1(\omega) \cdot \bar{2}^n = \bar{2}^n \sum_{k=0}^n k \binom{n}{k} =$$
$$= \bar{2}^n \cdot \frac{d}{dx} (1+x)^n \Big|_{x=1} = \bar{2}^n \cdot n \cdot 2^{n-1} = \frac{n}{2}$$

Question: Can we find an easier way to compute $E(f_1)$?

Definition: Let $A \subseteq \Omega$ be an event in a probability space (Ω, P) . The indicator of the event A is the random variable $I_A: \Omega \rightarrow \{0, 1\}$ defined as

$$I_A(\omega) := \begin{cases} 1 & \text{for } \omega \in A \\ 0 & \text{for } \omega \notin A. \end{cases}$$

Lemma: For any event A , we have $E(I_A) = P(A)$.

Proof: $E(I_A) = \sum_{\omega \in \Omega} I_A(\omega) \cdot P(\{\omega\}) = \sum_{\omega \in A} P(\{\omega\}) = P(A)$.

Theorem (linearity of expectation)

Let f, g be arbitrary random variables on a finite probability space (Ω, P) and let $\alpha \in \mathbb{R}$. Then:

$$E(\alpha f) = \alpha \cdot E(f) \quad \text{and} \quad E(f+g) = E(f) + E(g).$$

Number of 1's counted again;

For $i=1, \dots, n$ let A_i be the event

„ i -th element of the random sequence is 1“

Then $P(A_i) = \frac{1}{2}$.

For each $\omega \in \{0, 1\}^n$ we have

$$f_1(\omega) = I_{A_1}(\omega) + I_{A_2}(\omega) + \dots + I_{A_n}(\omega).$$

Therefore

by linearity

$$\mathbb{E}(f_1) = \mathbb{E}(I_{A_1}) + \dots + \mathbb{E}(I_{A_n})$$

By lemma

$$= P(A_1) + \dots + P(A_n)$$

$$= \frac{n}{2}.$$

Probabilistic method.

Idea: Use suitable probability spaces to prove existence results.

Theorem: Let (\mathcal{R}, P) be a finite probability space and let $f: \mathcal{R} \rightarrow \mathbb{R}$ be a random variable.

If $E(f) = m$ then there exists at least one elementary event ω_1 such that $f(\omega_1) \geq m$.

Analogously, there exists at least one elementary event ω_2 such that $f(\omega_2) \leq m$.

Application 1. Existence of large bipartite subgraphs.

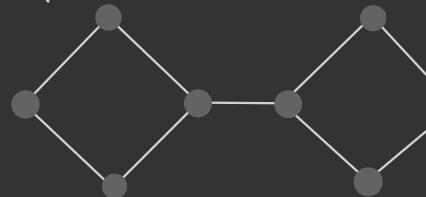
Theorem: Let G be a graph with an even number $2n$ of vertices and with $m > 0$ edges.

Then the set $V = V(G)$ can be divided into two disjoint n -element subsets A and B in such a way that more than $\frac{m}{2}$ edges go between A and B .

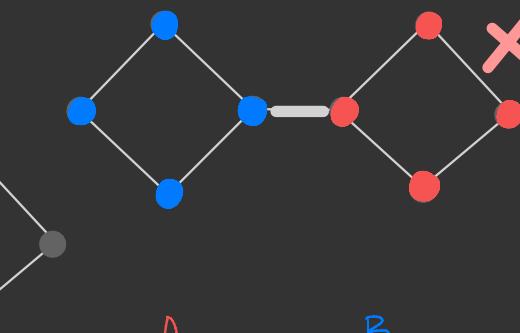
Example:

$$n = 4$$

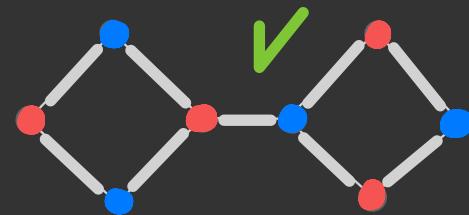
$$m = 9$$



A



B



Proof: Consider the probability space (\mathcal{R}, P) where

$\mathcal{R} = \binom{V}{n}$ = the set of all n -element subsets of $V(G)$.

with the probability measure

$$P(S) := \frac{|S|}{|\mathcal{R}|} \quad \text{for} \quad S \subseteq \mathcal{R}.$$

Let $A \in \mathcal{R}$ be a random n -element subset of $V(G)$,

define $B := V(G) \setminus A$ its complement

Consider the following random variable:

$X(A) := |\text{edges between } A \text{ and } B| =$

$$|\{ \{a, b\} \mid a \in A, b \in B, \{a, b\} \in E(G) \}|$$

Let us compute $\mathbb{E}(X)$.

For $e = \{u, v\} \in E(G)$ we define the event

$$C_e := \{A \in \mathcal{S} \mid |A \cap e| = 1\}$$

„edge e is between A and B “

Recall: The indicator function $I_{C_e}(A) = \begin{cases} 1, & A \in C_e \\ 0, & A \notin C_e. \end{cases}$

We have $X = \sum_{e \in E(G)} I_{C_e}$ and therefore

$$\mathbb{E}(X) = \sum_{e \in E(G)} \mathbb{E}(I_{C_e}) = \sum_{e \in E(G)} P(C_e).$$

$$\text{We compute } P(C_e) = \frac{2 \binom{2n-2}{n-1}}{\binom{2n}{n}} = \frac{n}{2n-1} > \frac{1}{2}$$

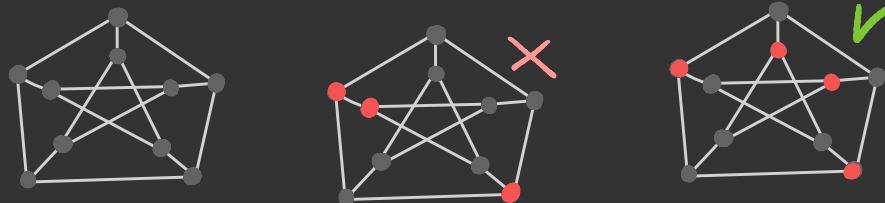
Thus $\mathbb{E}(X) = \sum_{e \in E(G)} P(C_e) > \frac{m}{2}$. By Theorem $X(A) > \frac{m}{2}$ for some $A \in \mathcal{S}$
This finishes the proof

Application 2: Turán's theorem.

Definition: Let G be a graph. A set $S \subseteq V(G)$ is an independent set if no two vertices of S are connected by an edge.

$\alpha(G)$:= the size of the largest independent set of vertices in the graph G .

Example:



Theorem (Turán) For every graph G we have

$$\alpha(G) \geq \frac{|V(G)|^2}{2 \cdot |E(G)| + V(G)}.$$

Lemma: For any graph G we have

$$\alpha(G) > \sum_{v \in V(G)} \frac{1}{\deg(v) + 1}.$$

Proof: Suppose that the vertices of G are numbered $1, \dots, n$.

Pick a random permutation π of the vertices.

Define the set $M(\pi) \subset V(G)$ by

$$M(\pi) := \{v \in V \mid \text{all neighbours } u \text{ of } v \text{ satisfy } \pi(u) > \pi(v)\}$$

$M(\pi)$ is an independent set of G .

Therefore $|M(\pi)| \leq \alpha(G)$ for any permutation π .

$$\Rightarrow \mathbb{E}(|M(\pi)|) \leq \alpha(G).$$

Now we calculate the expected size of M .

Let $v \in V$, A_v := the event " $v \in M(\pi)$ ".

Then $P(A_v) = \frac{1}{\deg(v)+1}$ why?

and $|M(\pi)| = \sum_{v \in V} I_{A_v}(\pi)$.

Now

$$\mathbb{E}(|M|) = \sum_{v \in V} \mathbb{E}(I_{A_v}) = \sum_{v \in V} P(A_v) = \sum_{v \in V} \frac{1}{\deg(v)+1}$$

Since $\alpha(G) \geq \mathbb{E}(|M|)$ this finishes the proof
of the lemma

Proof of Turán's theorem:

Let $|V(G)| = n$ and d_1, \dots, d_n be the degrees of vertices of G .

Then $\sum_{i=1}^n d_i = 2 \cdot |E(G)|$

$$\sum_{i=1}^n \frac{1}{d_i + 1} \geq \frac{n^2}{d_1 + \dots + d_n + n} = \frac{n^2}{2|E| + n}.$$

inequality between arithmetic mean and harmonic mean

This finishes the proof of Turán's theorem \blacksquare

Question: Is Turán's theorem sharp? Try to construct graphs attaining Turán's bound.

Discussion

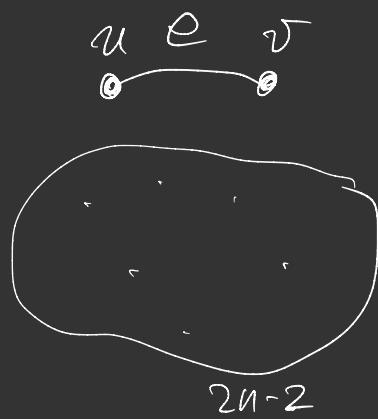
Compute $P(C_e)$

$$A \subset V$$

$$|A| = n, |V| = 2n$$

$$e = \{u, v\}$$

C_e ; = „A contains exactly one vertex of $e\}$



$$P(C_e) = P(A \text{ contains } u \text{ and does not contain } v)$$

$$+ P(A \text{ contains } v \text{ and does not contain } u)$$

$$= \frac{2 \binom{2n-2}{n-1}}{\binom{2n}{n}}$$

Why is $M(\pi)$ independent set?

$$M(\pi) := \{ v \in V \mid \text{all neighbours } u \text{ of } v \text{ satisfy } \pi(u) > \pi(v) \}$$

Suppose:

$$v_1 \in M(\pi)$$

$$v_2 \in M(\pi)$$

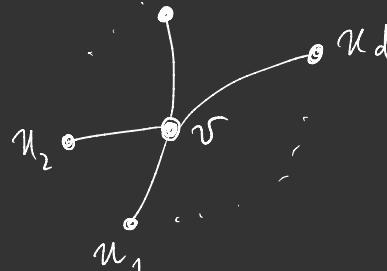
$$v_1 \in M(\pi) \Rightarrow \pi(v_1) < \pi(v_2)$$

$$v_2 \in M(\pi) \Rightarrow \pi(v_2) < \pi(v_1)$$

$\Rightarrow M$ is an independent set.

Let $v \in V$, A_v : = the event " $v \in M(\pi)$ ".

Then $P(A_v) = \frac{1}{\deg(v) + 1}$ \leadsto why?



$$d = \deg(v)$$

A_v occurs $\Leftrightarrow \pi(v) < \pi(u_1), \dots, \pi(v) < \pi(u_d)$

Let $K_{\pi} = \{k_1, k_2, \dots, k_{d+1}\}$ be the set $\{\pi(v), \pi(u_1), \dots, \pi(u_d)\}$
and assume $k_1 < k_2 < \dots < k_{d+1}$

All $(d+1)$ -element subsets of k_1, k_2, \dots, k_{d+1} are equally probable.

$\pi \in A_v$ if and only if $\pi(v) = k_1$

$$P(A_v) = \frac{d!}{(d+1)!} = \frac{1}{d+1}$$