
Random variables

and their expectations



Definition : Let (R, P ) be a finite probability
space .

A random variable on r is any

map fir → R .

Example : Let@ = 20,13h
,

P (A) =¥r ,) - be the
probability space of h -term random sequences of

1 's and 0's
.

ffw ) : = number of 1s in a random sequence
W = (Wn

, . .
.

,
Wn ) Wi C- 41,0 } .

Example 2 : Number of fixed points in a random permutation

Example 3 : Number of triangles in a random graph .



Definition : Let (R, P) be a finite probability space,
and let f be a random variable on it

.

The expectation of f is a real number Elt)
defined by the formula :

E- (f ) : = -2 P ( {w}) . few)
.

w-ER

Example : Let f , be the number of 1 's in a random

n - term sequence of 1 'S and 0 'S
.
( (RP) defined on a previous slide

Elf
,) : = -2www.ynftw) . I

"
= 2-

" Ék ( ng) =
1<=0

= In • ¥11 -1×3" / ✗ = , = In . h . 2h" = 12
Question : Can we find an easier way to compute E- (f) ?



Definition : Let A c-I be an event in a probability
space (R

,
P)

.

The indicator of the event A

is the random variable IA :D → 40,1} defined as

IA (w ) : = { 1 for w c- A

0 for w¢A .

Lemma : For any event A
,
we have E- ( Ia ) =P(A) .

Proof : E- ( IA) = [ IACW) -Paw})=IP( { w})= PCA )
.

wer WEA 1¥

Theorem ( Linearity of expectation)
Let f

, g be arbitrary random variables on a

finite probability space (r,P) and let ✗ c- 112
.

Then :

E- ( ✗ f) = 2. F- (f) and E- ( 5- + g) = E-(f) + E- (g) .



Number of 1 's counted again :

For i=1
,

. . .,n let Ai be the event

"
i-th element of the random sequence is 1

"

Then PCA;) = E.
For each W C- 20,13

"

we have

fnlw ) = Ipfnw) + Ipf;D -1 . . .
+ Ipfnw) .

Therefore by linearity
☒ (fn) = E- ( IA) -1 . . .

+ E-( IA)
*
by Lemma

= PCA ,) -1 . . .

+ P( An)

= 12
.



Probabilistic method
.

Idea : Use suitable probability spaces to prove existence results .

Theorem : Let ( R , P) be a finite probability
space and let fire IR be a random variable

.

If E- (f) =m then there exists at least one

elementary event W
,

such that few, ) >m .

Analogously , there exists at least one elementary event

Wz such that f- (Wz) Em .



Application 1. Existence of large bipartite subgraphs .

Theorem : Let G be a graph with an even number
mum

2h of vertices and with m > 0 edges .
Then the set V=VlG ) can be divided into

two disjoint n - element subsets A and B in

such a way that more then Mz edges go
between

A and B
.

⑧ ⑨

Example : • • • •
• •

h=4
.

⑧ • • •

@ M •

M = g
• • • •

• •
A B

• •



Proof : Consider the probability space (RP) where

I = ( Y ) = the set of all h - element subsets of VCG) .

with the probability measure

PCs) ; =
II
1st

for S Er
.

Let A- c-I be a random n - element subset of VCG)
,

define B : = VIGNA its complement

consider the following random variable :

✗ (A) : =/ edges between A and B / =

149631 a c- A
,
be B

,
{ a. 83 c- ECG)} /



Let us compute F- ( X)
.

For e = hair}EE(G) we define the event

ce i = { Aer I lAnel=1 }

" edge e is between A and B ?

Recall : the indicator function Ice (A) = { 1-
A- c- Ce

O
,
A # Ce

.

We have ✗ = I
ee E- (g)

Ice and therefore

E- (X) -_ I E- ( Ice)=IP( Ce ) .

e c- E- (G) eEE(G)

We compute Pcce)=2¥÷ = ÷,
> I

Thus F- ( X ) -_ Egg > Pcce ) > M-z.BY Theorem ✗ (A)>ME for some AER
this finishes the proof 1%-4,



Application 2 ; Turin's theorem
.

Definition : Let G be a graph .

A set SEVCG)

is an independent set if no two vertices of 5

are connected by an edge .

✗ (G) : = the size of the largest independent
set of vertices in the graph G.

o o ✓

Example : •
•

•

• • •
•

! I •
•

••

• •

•

° •

•
,

• •

og
•

° •

••

Theorem ( Turin) For every graph G we have

IV (G) 12
✗ (G) 72.1%+76) •



Lemma : For any graph G we have

✗ (G) 3 I 1-
degas) -11

'

VeV(G)

Proof : Suppose that the vertices of G are numbered 1
,

. . .,h .

Pick a random permutation A of the vertices.
Define the set Mca )cV(G) by

MCM) : -_ { VEV / all neighbours u of V satisfy the) > AND
Mla) is an independent set of G.

Therefore IMean c- ✗ (G) for any permutation a.

⇒ E- ( IMEDI ) E ✗ (G)
.



Now we calculate the expected size of M .

Let no EV
, Avi = the event "

ve Mito
.

"

Then Pl Av) = deg¥ , * why ?

and IM in )|= IAIN .

Now

ECIMI)=¥vE( IAD
= [ P(Ao)=I ^_
REV vevdeglv) -11

Since ✗ (G) 3 E- ( IMD this finishes the proof
of the lemma F



Proof of Tufan 's theorem :

Let IV (G) th and dy . . ;D, be the degrees
of vertices of G.

Then É di = 2.IE (G) I
i. =L

ñ_
=
IÉ ¥-1 7¥. d

,
-1

. . .to/n+n2.lEl+n
•

i. =\

inequality between arithmetic mean and harmonic mean

This finishes the proof of Turin 's theorem ☒%.

Question : Is turan 's theorem sharp ? Try to construct graphs
attaining Turin 's bound .



Discussion •#i

Compute PIC e)
A CV IAT- h

,
WI --2N

e = try ,v)
2n -2

Ce i =
, ,

A contains exactly one vertex of e}

P ( (e) = PC A contains u and does not contain of

+ p CA contains V and doen not contain a)
= 41¥



Why is Mcr) independent set ?

MCM) : -_ { VEV / all neighbours Nofv satisfy the) > and}

Suppose :

frog
,

the Mitt )
V2 C-MCR )

V
,
EMIN ⇒ Turn ) < aura)

REM la ) ⇒ turn < acre)
&

⇒ M is an independent set .



Let no EV
, Avi = the event "

ve Mito
.

"

Then Pl Av) = deg¥ , * why ?
.

.

-

•

• Md

#•É'

D= deg G)1.
.

.

:

n:
Au ackers ⇐ our)< ☐ CUD

,

.
. .

,
aw) < Jilted)

Let KI-dkn.kz , . .

,
kdt , } be the set { Tito, Nun), .

. ,D(Ud)}

and assume kicked . . .

< kdit
All Cdt ) - element subsets of 41,2, .

. ,uy are equals probable.

TLE Av if and only if 0710) = ke

PC Av) = ,dd÷, ! = ¥+1


