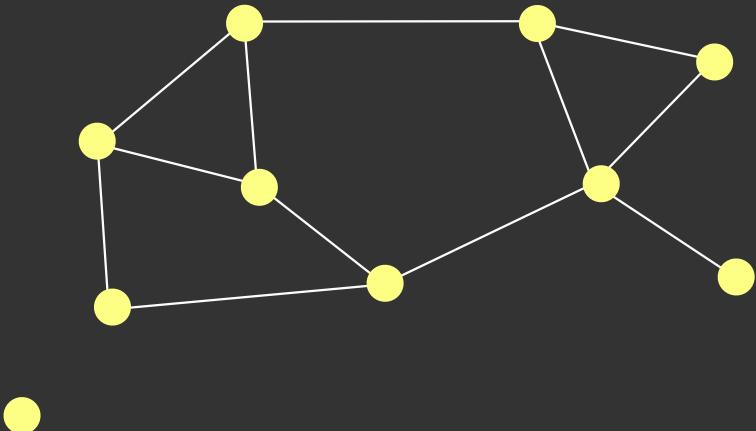


Random graphs



Erdős - Rényi random graph model

Two variants:

- 1 In the $G(n, N)$ model a graph is chosen uniformly at random from the collection of all graphs which have n labeled nodes and N edges.
- 2 In $G(n, p)$ model, a graph is constructed by connecting labeled nodes randomly. Each edge is included in the graph with probability p , independently from every other edge.

Comparison between two models.

Consider the second model $G(n, p)$.

What is the probability P_N that a random graph has exactly N edges?

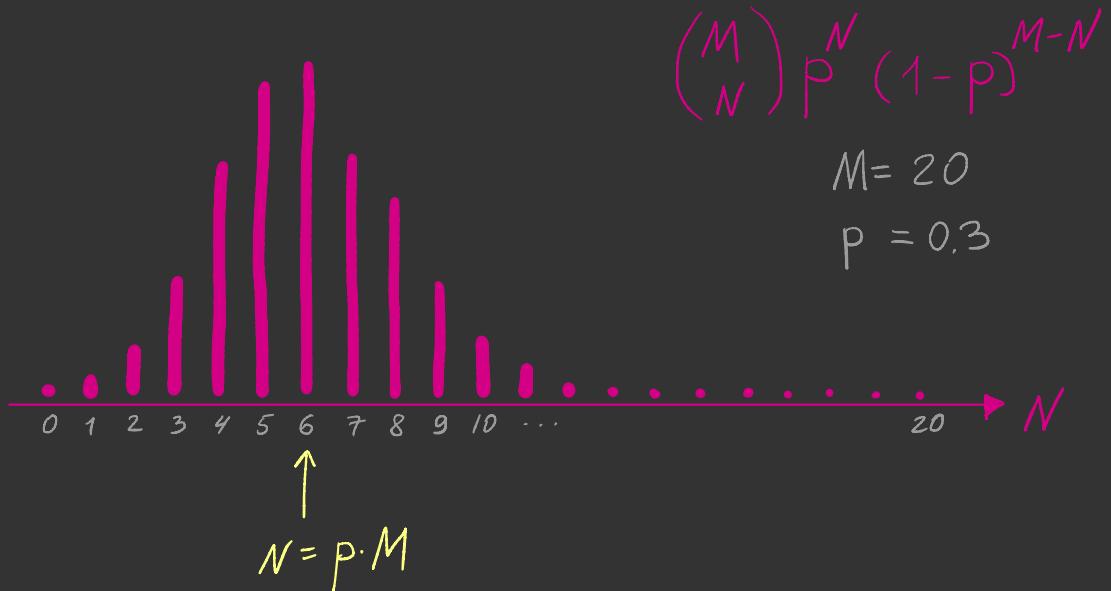
Comparison between two models.

Consider the second model $G(n, p)$.

What is the probability P_N that a random graph has exactly N edges?

$$\binom{\frac{n(n-1)}{2}}{N} p^N (1-p)^{\frac{n(n-1)}{2} - N}$$

Bell curve again



Heuristically, if $pn^2 \rightarrow \infty$, then $\mathcal{G}(n, p)$ behaves similarly to $\mathcal{G}(n, N)$ with $N = \binom{n}{2} \cdot p$.

Question:

What is the probability that a random graph is connected?

The answer depends on parameters n, N or n, p .

Answer (Erdős - Renyi 1959)

As n goes to infinity

$$N = \frac{1}{2} n \cdot \log(n) \quad P = \frac{\log(n)}{n}$$

is a sharp threshold for the connectedness of
 $G(n, N)$ $G(n, p)$

Let c be an arbitrary fixed real number.

We set

$$N_c = \left[\frac{1}{2} n \log(n) + c \cdot n \right].$$

Theorem (Erdős - Rényi)

Let $P(n, N_c)$ denote the probability of G_{n, N_c} being connected.

Then we have

$$\lim_{n \rightarrow \infty} P(n, N_c) = e^{-e^{-2c}}.$$

Other questions:

1. What is the probability that $G(n, N)$ has exactly k connected components
2. What is a typical size of the biggest connected component

• • •

Definition: A graph $G = (V, E)$ is of type A if it consists of k isolated points and a connected graph having $n-k$ vertices

Any graph which is not of type A is called to be of type \bar{A} .

Lemma: Let $P(\bar{A}, n, N_c)$ denote the probability of G_{n, N_c} being of type \bar{A} .
Then we have

$$\lim_{n \rightarrow \infty} P(\bar{A}, n, N_c) = 0.$$

Thus for a large n almost all graphs G_{n, N_c} are of type \bar{A} .

Proof of the lemma:

Let M be a large positive number, which will be chosen later.

E_M - the set of graphs in $\mathcal{G}(n, N_c)$ such that the greatest connected component consists of not less than $n-M$ points.

\bar{E}_M - complement of E_M .

Let $\mathcal{N}(\bar{E}_M, n, N_c)$ denote the size of \bar{E}_M .

If the graph consists of r connected components having ℓ_i points ($i = 1, 2, \dots, r$) then

$$\sum_{i=1}^r \ell_i = n \quad \text{and} \quad \sum_{i=1}^r \binom{\ell_i}{2} \geq N_c.$$

Therefore if $L := \max_i \ell_i$ we have

$$\frac{L-1}{2} \geq \frac{N_c}{n} \quad \text{and} \quad \text{thus} \quad L > \frac{2N_c}{n}.$$

This implies $M \leq n - \frac{2N_c}{n}$.

Therefore we have

$$N(\bar{E}_M, n, N_c) \leq \sum_{M < s < n - \frac{2N_c}{n}} \binom{n}{s} \binom{\binom{n}{2} - s(n-s)}{N_c}.$$

Probability of Γ_{n, N_c} belonging to the class \bar{E}_M

$$P(\bar{E}_M, n, N_c) = \frac{\mathcal{N}(\bar{E}_M, n, N_c)}{\binom{\binom{n}{2}}{N_c}} \leq$$

$$\leq \sum \binom{n}{s} \frac{\binom{\binom{n}{2} - s(n-s)}{N_c}}{\binom{\binom{n}{2}}{N_c}}.$$

$$M < s < n - \frac{2N_c}{n} \quad \binom{\binom{n}{2}}{N_c}$$

We will use the following estimates for $n \geq n_0$.

$$\binom{n}{s} \frac{\binom{n}{2} - s(n-s)}{\binom{n}{2} N_c} \leq \frac{e^{(3-2c)s}}{s!} \quad \text{for } s \leq \frac{n}{2}$$

and

$$\binom{n}{s} \frac{\binom{n}{2} - s(n-s)}{\binom{n}{2} N_c} \leq \frac{e^{(3-2c)(n-s)}}{(n-s)!} \quad \text{for } s \geq \frac{n}{2}.$$

$$P(\bar{E}_M, n, N_c) \leq \sum_{s > \frac{2N_c}{n}} \frac{e^{(3-2c)s}}{s!} + \sum_{s > M} \frac{e^{(3-2c)s}}{s!} \quad \text{for } h \geq h_0.$$

Thus

$$\lim_{n \rightarrow \infty} P(\bar{E}_{\log \log n}, n, N_c) = 0.$$

It suffices to show that

$$\lim_{n \rightarrow \infty} P(\bar{A} \cap E_{\log \log n}, n, N_c) = 0.$$

We have

$$P(\bar{A} \cap E_{\log \log n}, n, N_c) \leq \frac{1}{\binom{n}{2} \binom{N_c}{s}} \sum_{s=2}^{\log \log n} \binom{n}{s} \left(\sum_{r=1}^{\binom{s}{2}} \binom{s}{r} \binom{n-s}{N_c-r} \right)$$

because

if the $n-s$ points forming the greatest connected component of a graph belonging to the set $\bar{A} \cap E_{\log \log n}$ are fixed, then if r is the number of edges connecting some of s points outside this connected component we must have $r \geq 1$, and these r edges can be chosen in $\binom{s}{r}$ ways, the remaining N_c-r edges can be chosen in less than $\binom{n-s}{N_c-r}$ ways.

Thus we obtain

$$\begin{aligned} P(\bar{A} \in_{\log \log n, n, N_c}) &\leq \frac{\log n}{n} \sum_{s=2}^{\log \log n} \frac{2^{\binom{s}{2}} e^{-2sc}}{s!} \leq \\ &\leq \frac{e^{e^{-2c}} \cdot e^{\frac{1}{2}(\log \log n)^2}}{n}. \end{aligned}$$

Therefore $\lim_{n \rightarrow \infty} P(\bar{A} \in_{\log \log n, n, N_c}) = 0$.

This finishes the proof of the lemma \square

Proof of Theorem:

$N_o(n, N_c)$ - number of connected graphs in $\mathcal{G}(n, N_c)$.

$N'_o(n, N_c)$ - number of graphs in $\mathcal{G}(n, N_c)$ having no isolated points.

$$N'_o(n, N_c) = \sum_{k=0}^n (-1)^k \binom{n}{k} \binom{\binom{n-k}{2}}{N_c}$$

Exercise: Prove this statement

Moreover

$$\sum_{k=0}^{2s+1} (-1)^k \binom{n}{k} \binom{\binom{n-k}{2}}{N_c} \leq N'_o \leq \sum_{k=0}^{2s} (-1)^k \binom{n}{k} \binom{\binom{n-k}{2}}{N_c}.$$

Exercise: Use Bonferroni theorem to prove this statement

For any fixed value of k we have

$$\lim_{n \rightarrow \infty} \frac{\binom{n}{k} \binom{(n-k)}{N_c}}{\binom{(n)}{2} \binom{N_c}{N_c}} = \frac{e^{-2kc}}{k!}.$$

Exercise: Complete this computation.

Thus we obtain

$$\lim_{n \rightarrow \infty} \frac{N'_0(n, N_c)}{|g(n, N_c)|} = \sum_{k=0}^{\infty} \frac{(-1)^k e^{-2kc}}{k!} = e^{-e^{-2c}}.$$

Clearly

$$0 \leq \frac{\mathcal{N}_0'(n, N_c) - \mathcal{N}_0(n, N_c)}{|\mathcal{G}(n, N_c)|} \leq \frac{\mathcal{N}(\bar{A}, n, N_c)}{|\mathcal{G}(n, N_c)|}.$$

number of graphs having no isolated points

number of connected graphs

graphs not of the form $\{\text{isolated pts}\} \sqcup \{\text{one connected component}\}$

By the lemma

$$\frac{\mathcal{N}(\bar{A}, n, N_c)}{|\mathcal{G}(n, N_c)|} \rightarrow 0 \quad \text{as } n \rightarrow \infty.$$

This finishes the proof of the theorem.