

Ramsey numbers

Definition: The Ramsey number $R(k, l)$ is

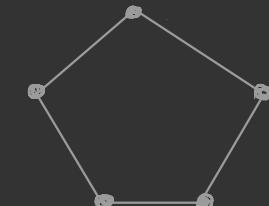
$R(k, l) = \min \{ n : \text{any graph of } n \text{ vertices}$
contains
either a clique of size k
or an independent set of size $l\}$

Examples: $R(2, 2) = ?$

G_1

G_2

$R(3, 3) = ?$



$R(3, 3) > 5$

Theorem (Ramsey)

The Ramsey number $R(k, l)$ is always finite.

Proof: We will prove this statement by induction on $k + l$

Base of induction: $R(2, m) = R(m, 2) = m$

Step of induction:

Lemma: $R(k, l) \leq R(k-1, l) + R(k, l-1)$

Proof of the lemma: Suppose that $R(k, l-1)$ and $R(k-1, l)$ are finite.

Let G be a graph on $R(k, l-1) + R(k-1, l)$ vertices.

Let v be a vertex of G . The degree of v is

either $\geq R(k-1, l)$

or $< R(k-1, l)$

If $\deg(v) \geq R(k-1, l)$ we consider the subgraph G' of G induced on the neighbourhood of v . G' has at least $R(k-1, l)$ vertices.

Therefore G' contains either a clique of size $k-1$

or an i -set of size l

Therefore, G contains either a clique of size k
or an i -set of size l . Why?

If $\deg(v) < R(k-1, l)$, then v is not connected to at least $R(k, l-1)$ points. We consider the subgraph G'' of G induced on the vertices not connected to v . G'' contains either a clique of size k or an i -set of size $l-1$.

Therefore, G contains either a clique of size k or an i -set of size l .

Exercise: Complete the proof of Ramsey theorem.

Corollary: $R(k, l) \leq \binom{k+l-2}{k-1}$

$$R(3, 3) = 6$$

$$R(4, 4) = 18$$

$$R(5, 5) = ?$$

It is known that $43 \leq R(5, 5) \leq 48$

Theorem: For any $k \geq 3$,

$$R(k, k) > 2^{\frac{k}{2}-1}$$

Proof: It suffices to prove that there exists a graph $G(V, E)$ such that $V \geq 2^{\frac{k}{2}-1}$ and G contains no cliques and no independent sets of size k .

Consider the finite probability space $\mathcal{G}(n, \frac{1}{2})$ of graphs on n vertices

probability of each edge is $\frac{1}{2}$.

$$P(\{G\}) = \frac{1}{|\mathcal{G}_n|} = 2^{-\binom{n}{2}}$$

For any fixed k vertices the probability that they

form a clique is $2^{-\binom{k}{2}}$

form an independent set

Recall: $P(A \cup B) \leq P(A) + P(B)$

for any two events A and B .

P (A random graph in $G(n, \frac{1}{2})$ contains a clique or an independent set)

$$= P \left(\bigcup_{\substack{S \text{ is a} \\ \text{subset of size } k \text{ in } [n]}} \{S \text{ forms a clique}\} \cup \{S \text{ forms an i-set}\} \right) \leq$$

$$\leq 2 \binom{n}{k} 2^{-\binom{k}{2}}$$

Suppose that $n \leq 2^{\frac{k}{2}-1}$.

Then

$$\begin{aligned} 2 \binom{n}{k} 2^{\frac{-k(k-1)}{2}} &\leq 2 \cdot n^k 2^{\frac{-k(k-1)}{2}} \leq \\ &\leq 2 \cdot 2^{\frac{(\frac{k}{2}-1)k}{2}} \cdot 2^{\frac{-k(k-1)}{2}} \\ &= 2^{1 + \frac{k^2}{2} - k - \frac{k^2}{2} + \frac{k}{2}} = 2^{1 - \frac{k}{2}} < 1. \end{aligned}$$

Therefore, there exists a graph with n vertices and containing neither a clique nor an i -set of size k \square