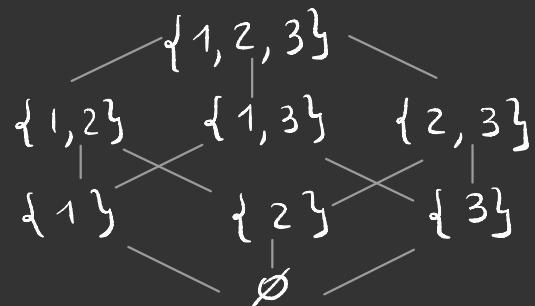


Partially ordered sets

posets



and Möbius inversion

Definition: A binary relation on a set A is a subset $R \subseteq A \times A$.

A relation is antisymmetric provided

$(a, b) \in R$ and $(b, a) \in R$ imply $a = b$.

A relation is transitive if $(a, b) \in R$ and $(b, c) \in R$ imply $(a, c) \in R$

A relation is reflexive if $(a, a) \in R$ for all $a \in R$.

Examples: ① The relation " \leq " on \mathbb{Z} is antisymmetric, transitive, and reflexive

② The relation " $<$ " on \mathbb{Z} is antisymmetric, transitive and not reflexive

③ The relation "coprime" is not antisymmetric, not transitive, and not reflexive.

Definition: A partial order on a set A is an antisymmetric, reflexive, and transitive relation $R \subseteq A \times A$.

A partially ordered set (or poset for short), is a set together with a partial order

Example 1. Let A be a set. The set 2^A of subsets of A is partially ordered by inclusion.

Reflexivity: $X \subseteq X$

Transitivity: if $X \subseteq Y$, $Y \subseteq Z$ then $X \subseteq Z$

Antisymmetry: if $X \subseteq Y$ and $Y \subseteq X$ then $X = Y$.

Example 2. The set $\mathbb{Z}_{\geq 1}$ is partially ordered by by the relation "d divides n".

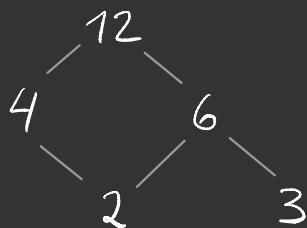
Reflexivity: n divides n

Transitivity: if $d|n$ and $d'|d$ then $d'|n$

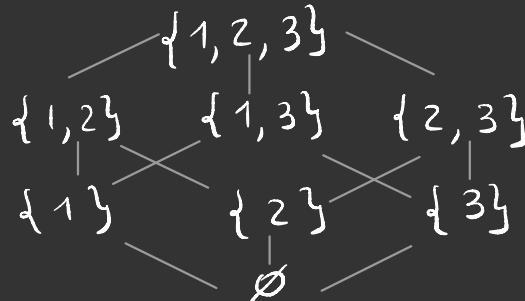
Antisymmetry: if $n|m$ and $m|n$ then $m=n$.

Hasse diagram

Let X be the divisors of 12 ordered by divisibility:



Let Y be the subsets of $\{1, 2, 3\}$ ordered by inclusion



Definition: A partially ordered set (X, \leq) is locally finite if for all $x, y \in X$ the interval

$$[x, y] := \{ z \in X \mid y \leq z \leq x \}$$

is finite.

We say that $0 \in X$ is a zero element if $0 \leq x$ for all $x \in X$.

Möbius inversion for posets.

Let (X, \leq) be a partially ordered locally finite set with 0.

Suppose that $f: X \rightarrow \mathbb{C}$ is a function

We define a new function $F: X \rightarrow \mathbb{C}$ by

$$F(x) := \sum_{y \leq x} f(y)$$

How do we recover f from F ?

Theorem (Möbius inversion for posets)

Given a partially ordered set X , there is a two-variable function $M: X \times X \rightarrow \mathbb{R}$ such that

$$F(x) = \sum_{y \leq x} f(y) \iff f(x) = \sum_{y \leq x} F(y) M(y, x)$$

M is called the Möbius function of the poset.

$X = \mathbb{Z}_{\geq 1}$
 \leq = "x divides y"
↓
Classical Möbius
inversion formula

Definition: Given a partially ordered set X , the incidence algebra $A(X)$ is the set of complex-valued functions $f: X^2 \rightarrow \mathbb{C}$ satisfying $f(x, y) = 0$ unless $x \leq y$

$A(X)$ is a vector space over \mathbb{C} with respect to pointwise addition and multiplication by scalars.

To make it into "algebra" we need one more operation:

Definition: Given $f, g \in A(X)$, their convolution $f * g$ is defined by

$$f * g(x, y) = \sum_{z: x \leq z \leq y} f(x, z) g(z, y)$$

Note, that $f * g(x, y) = 0$ if x is not $\leq y$. Hence $f * g \in A(X)$

Exercise: Convolution $*$ is associative: $(f * g) * h = f * (g * h)$.

Definition: The delta function δ is the following element of $\mathcal{A}(X)$:

$$\delta(x, y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise} \end{cases}$$

Exercise: δ is the unit in the algebra $\mathcal{A}(X)$.

That is, for all $f \in \mathcal{A}(X)$

$$f * \delta = \delta * f = f.$$

Convolution $*$ is not always commutative \triangleleft
 $f * g \not\equiv g * f$

Lemma: A function $f \in A(X)$ has a left and right inverse with respect to the convolution if and only if $f(x, x) \neq 0$ for all $x \in X$.

Proof: Given $f \in A(X)$ we find $g \in A(X)$ such that

$$f * g(x, y) \stackrel{\text{def}}{=} \sum_{x \leq z \leq y} f(x, z) g(z, y) = \delta(x, y).$$

For all $x \in X$

$$f * g(x, x) = f(x, x) g(x, x) = \delta(x, x) = 1.$$

Therefore, the condition $f(x, x) \neq 0$ for all $x \in X$ is necessary for the existence of the inverse.

We define $g(x, x) := f(x, x)^{-1}$ for all $x \in X$.

To define $g(x, y)$ for $x < y$, we assume by induction, that we have already found all $g(z, y)$ for all z , satisfying $x < z \leq y$

Then

$$\delta(x, y) = 0 = \sum_{x \leq z \leq y} f(x, z) g(z, y)$$

$$-f(x, x) g(x, y) = \sum_{x < z \leq y} f(x, z) g(z, y)$$

We can find $g(x, y)$ from this identity because $f(x, x) \neq 0$ and we know all the terms of the finite sum on the right side.

Finally, if $f * g_1 = \delta$ and $g_2 * f = \delta$
then

$$g_2 = g_2 * \delta = g_2 * f * g_1 = (g_2 * f) * g_1 = \delta * g_1 = g_1$$

Therefore, the left and the right inverses
of f coincide.

This finishes the proof

Definition: The zeta function $\zeta(x, y)$ of the poset (X, \leq) is the function

$$\zeta(x, y) = \begin{cases} 1 & \text{if } x \leq y \\ 0 & \text{otherwise} \end{cases}$$

The Möbius function $M(x, y)$ is the inverse of zeta function ζ with respect to convolution.

$$M * \zeta = \zeta * M = \delta$$

Proof of the Möbius inversion for posets.

Let $f: X \rightarrow \mathbb{C}$ be a function and $F: X \rightarrow \mathbb{C}$ is defined by

$$F(x) = \sum_{y \leq x} f(y).$$

Then for a fixed $x \in X$:

$$\begin{aligned} \sum_{y \leq x} F(y) \cdot M(y, x) &= \sum_{y \leq x} M(y, x) \cdot \sum_{z \leq y} f(z) \\ &= \sum_{\substack{z, y: \\ z \leq y \leq x}} f(z) M(y, x) = \sum_{z \leq x} f(z) \sum_{\substack{y: \\ z \leq y \leq x}} M(y, x) \\ &= \sum_{z \leq x} f(z) \left(\sum_{z \leq y \leq x} \delta(z, y) M(y, x) \right) = \sum_{z \leq x} f(z) (\delta * M)(z, x) \\ &= \sum_{z \leq x} f(z) \cdot \delta(z, x) = f(x) \end{aligned}$$

Now we show that the inverse is also true

Let $F: X \rightarrow \mathbb{C}$ be a function and we define $f: X \rightarrow \mathbb{C}$ by

$$f(x) = \sum_{y \leq x} F(y) M(y, x) \quad , \quad x \in X.$$

Then

$$\begin{aligned} \sum_{y \leq x} f(y) &= \sum_{y \leq x} \sum_{z \leq y} F(z) M(z, y) = \\ &= \sum_{\substack{z, y : z \leq y \leq x}} F(z) M(z, y) = \sum_{\substack{z, y : z \leq y \leq x}} F(z) M(z, y) Z(y, x) \\ &= \sum_{z : z \leq x} F(z) \left(\sum_{y : z \leq y \leq x} M(z, y) Z(y, x) \right) = \sum_{z \leq x} F(z) \delta(z, x) = F(x) \end{aligned}$$

Now let us compute the Möbius function for the following two posets

- The set 2^A ordered by inclusion, where A is a finite set
- The set $\mathbb{Z}_{\geq 1}$ ordered by "d is a divisor of n"

Lemma: Let 2^A be the set of subsets of a finite set A .
 2^A is partially ordered by inclusion.

The Möbius function of 2^A is given by

$$M(x, y) = (-1)^{|x| - |y|}$$

where $x \subseteq y \subseteq A$.

Proof: Next slide

We have to show that $M * Z = \delta$

Let x, y be two subsets of A such that $x \subseteq y$

We compute

$$M * Z(x, y) = \sum_{z: x \subseteq z \subseteq y} M(x, z) Z(z, y) =$$
$$= \sum_{z: x \subseteq z \subseteq y} (-1)^{|x| - |z|} \quad \text{=} \quad \left\{ \begin{array}{l} \text{We define } w_i = z \setminus x \\ \text{new summation variable } w \\ \text{runs over all subsets of } y \setminus x \\ \text{Moreover, } w \mapsto x \cup w =: z \end{array} \right.$$

$$\text{=} \sum_{w \subseteq y \setminus x} (-1)^{|w|} = \begin{cases} 0, & |y \setminus x| \geq 1 \\ 1, & |y \setminus x| = \emptyset \end{cases} = \delta(x, y) \quad \left\{ \begin{array}{l} \text{is a bijection between subsets} \\ \text{of } y \setminus x \text{ and the set of subsets } z \\ \text{such that } x \subseteq z \subseteq y. \end{array} \right.$$

This finishes the proof

Lemma: Consider the set $\mathbb{U}_{\geq 1}$, partially ordered by the relation "x divides y".

Then the Möbius function of this poset is

$$M(x, y) = \mu(y/x). \quad " \leq " = " \text{divides}"$$

Proof: We need to show that $M * \mathcal{E} = \delta$.

For $x, y \in \mathbb{U}_{\geq 1}$, with $x \mid y$ we

$$M * \mathcal{E}(x, y) = \sum_{z \in \mathbb{U}_{\geq 1}} M(x, z) \cdot \mathcal{E}(z, y) =$$

We have evaluated this sum in the first video

$$= \sum_{z: x \mid z, z \mid y} M\left(\frac{z}{x}\right) = \left\{ \begin{array}{l} x \leq z \leq y \\ \text{we make a change} \\ \text{the summation variable} \\ d := \frac{z}{x} \\ d \text{ runs over divisors of } \frac{y}{x} \end{array} \right\} = \sum_{d \mid \frac{y}{x}} M(d) = \begin{cases} 1, & \frac{y}{x} = 1 \\ 0, & \text{otherwise} \end{cases} = \delta(x, y)$$