

Matrix tree
or
Kirchhoff's theorem

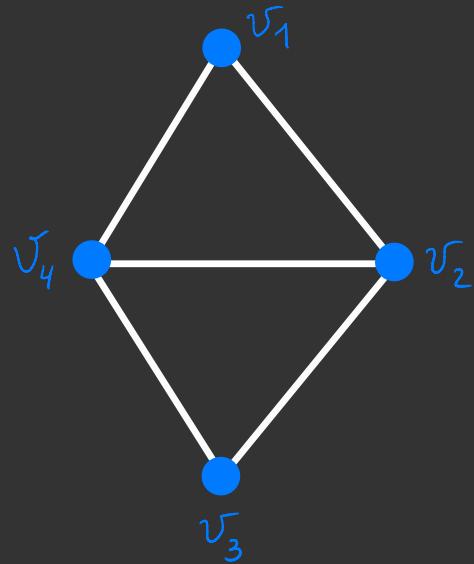
Theorem (Kirchhoff) Let G be a connected graph on n vertices. Then the rank of the Laplace matrix $L(G)$ is $n-1$.

Let $0, \lambda_1, \dots, \lambda_{n-1}$ be the eigenvalues of $L(G)$.

Then the number of spanning trees of G is

$$\frac{1}{n} \lambda_1 \cdot \lambda_2 \cdots \lambda_{n-1}.$$

Example:



$$L(G) = \begin{pmatrix} 2 & -1 & 0 & -1 \\ -1 & 3 & -1 & -1 \\ 0 & -1 & 2 & -1 \\ -1 & -1 & -1 & 3 \end{pmatrix}$$

Characteristic poly of this matrix;

$$\det(L - x \cdot \text{id}_4) = x^4 - 10x^3 + 32x^2 - 32x$$

Eigenvalues of this matrix are;

$$0, 2, 4, 4$$

Matrix tree theorem implies: this graph has 8 spanning trees.

Let $M = M(G)$ be an incidence matrix of G .

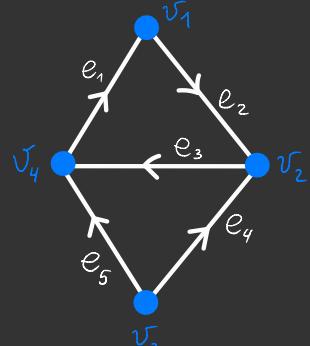
Let $M_0(G)$ be the matrix obtained from $M(G)$ by removing the last row. ($M_0(G) \in M_{(|V|-1) \times |E|}(\mathbb{Z})$)

Let $S \subset E$ be a subset of edges such that
 $|S| = |V(G)| - 1$.

$M_0(S) :=$ submatrix of $M_0(G)$ formed by columns
of M_0 indexed by edges of S .

Lemma: Let S be a set of $n-1$ edges of G .
 If S does not form the set of edges of a spanning tree, then $\det(M_0(S)) = 0$.
 If S is the set of edges of a spanning tree of G , then $\det(M_0(S)) = \pm 1$.

Example:



$$M(G, \emptyset) = \begin{bmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & -1 & 0 & -1 \end{bmatrix}$$

G, \emptyset

$$S = \{e_1, e_3, e_5\}$$

$$M_0(S) = \begin{bmatrix} -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & -1 & 0 & -1 \end{bmatrix}$$

$$\det(M_0(S)) = -1$$

Proof of the lemma:

First, suppose that S is not the set of edges of a spanning tree.

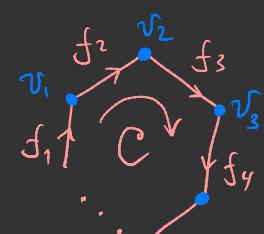
Then some subset R of S forms the edges of a cycle C in G .

Suppose that the cycle C has edges f_1, \dots, f_s in this order.

Let $\vec{w}_1, \dots, \vec{w}_s$ be the corresponding column vectors of $M_0(S)$.

Define $k_i := \begin{cases} +1 & \text{if orientation of } f_i \text{ coincides with orientation of } C. \\ -1 & \text{if not.} \end{cases}$

We have: $\sum_{i=1}^s k_i \cdot \vec{w}_i = 0$.



	f_1	f_2	f_3	\dots
v_1	-1	+1	0	
v_2	0	-1	+1	
v_3	\vdots	0	-1	
v_4	0	\vdots	0	
\vec{w}_1	\vec{w}_1	\vec{w}_2	\vec{w}_3	\vec{w}_s

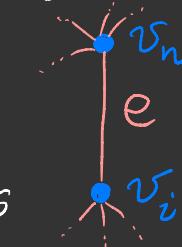
Therefore $\text{rk } (M_0(S)) < n-1 \Rightarrow \det (M_0(S)) = 0$.

Now suppose that S is the set of edges of a spanning tree T .

Recall: v_n is the last vertex of G which corresponds to the row removed from M to obtain M_0 .

Let e be an edge of T which is connected to v_n .

The column of $M_0(S)$ indexed by e contains exactly one non-zero entry (which is ± 1).



Remove from $M_0(S)$ the row containing this

non-zero entry (the row corresp. to v_i) and the column corresponding to e .

We obtain a $(n-2) \times (n-2)$ matrix M_0' .

We have $\det(M_0(S)) = \pm \det(M_0')$

$$v_i \rightarrow \boxed{\begin{matrix} 0 \\ 0 \\ \vdots \\ \pm 1 \\ 0 \end{matrix}} M_0[S]$$

Let T' be the tree obtained from T by contracting the edge e to a single vertex u :

Then M'_0 is the matrix obtained from the incidence matrix of T' by removing the row indexed by u .

By induction on the number n of vertices we have $\det(M'_0) = \pm 1$ (the case $n=2$ is trivial).

This finishes the proof of the lemma. □

Let A be a rectangular matrix of size $m \times n$.

Suppose $m \leq n$ and S is an m -element subset of $\{1, 2, \dots, n\}$. Then we denote by $A[S]$ the matrix $(A_{i,j})_{\substack{i=1, \dots, m \\ j \in S}}$ consisting of columns of A indexed by elements of S .

Example.

$$A = \begin{pmatrix} 1 & 0 & 3 \\ 5 & 6 & 7 \end{pmatrix}, \quad S = \{1, 3\}, \quad A[S] = \begin{pmatrix} 1 & 3 \\ 5 & 7 \end{pmatrix}.$$

Theorem (Binet-Cauchy)

Let $A, B \in M_{m \times n}(\mathbb{C})$. If $m \leq n$ then

$$\det(A \cdot B^t) = \sum_S (\det A[S])(\det B[S])$$

where S runs over all m -element subsets of $\{1, 2, \dots, n\}$.

Proof of Kirchhoff's theorem:

Recall: $L(G)$ is the Laplace matrix of G .

Let $L_o(G)$ be the matrix obtained from $L(G)$ by removing the last row and the last column.

$$L(G) = \begin{bmatrix} L_o(G) & \begin{matrix} L_{1,n} \\ L_{2,n} \\ \vdots \\ L_{n,n} \end{matrix} \\ \hline L_{1,n} & L_{2,n} & \cdots \end{bmatrix} \quad L_{in} = - \sum_{j=1}^{n-1} L_{ij}, \quad i=1, \dots, n \quad \text{rk } L(G) < n$$

$$\begin{bmatrix} L_o & \begin{matrix} 0 \\ 0 \\ \vdots \\ 0 \end{matrix} \\ \hline 0 & 0 & \cdots & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & & & -1 \\ 1 & \textcircled{0} & & -1 \\ \textcircled{0} & \ddots & & -1 \\ & & 1 & -1 \end{bmatrix} = \begin{bmatrix} L_o & \begin{matrix} L_{1,n} \\ L_{2,n} \\ \vdots \\ L_{n,n} \end{matrix} \\ \hline 0 & 0 & \cdots & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & & & 0 \\ 1 & \textcircled{0} & & \vdots \\ \textcircled{0} & \ddots & & 0 \\ & & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} L_o & \begin{matrix} 0 \\ 0 \\ \vdots \\ 0 \end{matrix} \\ \hline -1 & -1 & \cdots & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & & & -1 \\ 1 & \textcircled{0} & & -1 \\ \textcircled{0} & \ddots & & -1 \\ & & 1 & -1 \end{bmatrix} = \begin{bmatrix} L_o & \begin{matrix} L_{1,n} \\ L_{2,n} \\ \vdots \\ L_{n,n} \end{matrix} \\ \hline L_{1,n} & L_{2,n} & \cdots & L_{n,n} \end{bmatrix}$$

Exercise: Show that $\det(L_o(G)) = \frac{1}{n} \lambda_1 \lambda_2 \cdots \lambda_{n-1}$.

We have $L_0 = M_0 \cdot M_0^t$.

By Binet - Cauchy theorem

$$\det(L_o) = \sum_{S \in F} (\det M_o[S]) (\det M_o^t[S])$$

$$= \sum_{\substack{S \subseteq E \\ |S|=n-1}} \left(\det M_0[S] \right)^2 = \quad \quad \quad \text{Here we use the} \\ \text{Lemma}$$

$$= \sum_S (\pm 1)^2 + \sum_S (0)^2$$

S is the set of edges of a spanning tree

S is not the set of edges of a spanning tree

= the number of spanning trees in G .

