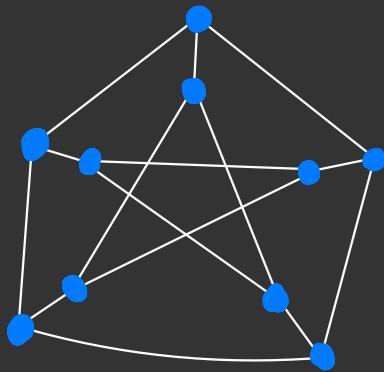


Graph theory

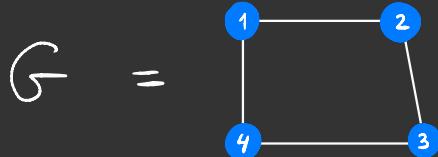


Basic definitions

Definition: A graph G is an ordered pair (V, E) where V is a set of elements called vertices and E is a set of 2-element subsets of V , called edges.

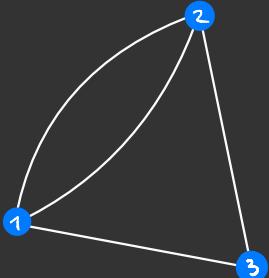
Example: $V = \{1, 2, 3, 4\}$

$$E = \{\{1, 2\}, \{2, 3\}, \{3, 4\}, \{4, 1\}\} \subset \binom{V}{2}$$



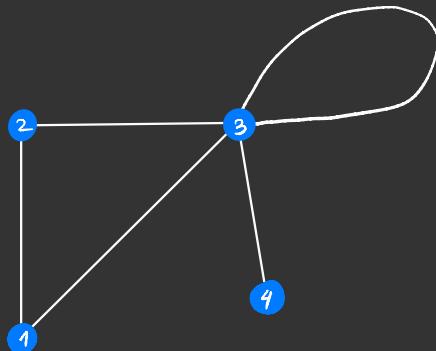
Terminology:
undirected simple graph

Non-examples:



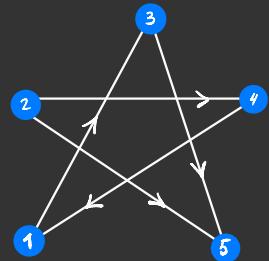
Multiple edges

undirected multigraph



Loops

multiple/simple
undirected
graph with
loops



Directions of
edges

directed
graph

Important graphs

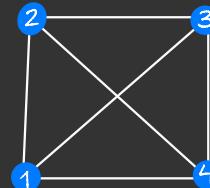
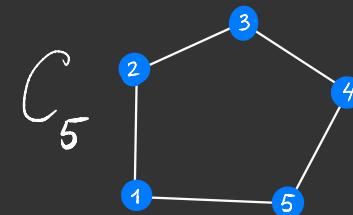
Definition: Let V be a finite set.

A complete graph on vertices V (or a clique) is the graph $G = (V, \binom{V}{2})$

A complete graph with n vertices is denoted K_n

Example:

K_4



Definition: The cycle C_n

$$V = \{1, 2, \dots, n\} \quad E = \{\{1, 2\}, \{2, 3\}, \dots, \{n-1, n\}, \{n, 1\}\}$$

Let $G = (V, E)$ be a graph

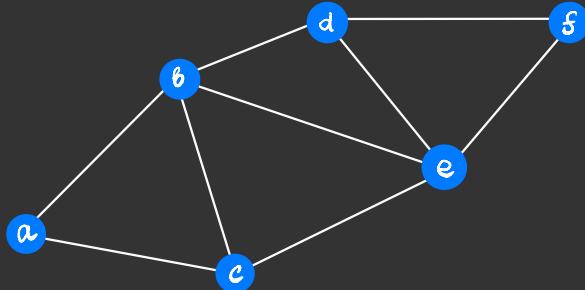
Definition: Let $v_1, v_2 \in V$ be vertices of G .

If $\{v_1, v_2\} \in E$ we say that v_1 and v_2 are connected by an edge or adjacent

We also say that the edge $\{v_1, v_2\}$ is adjacent to vertices v_1 and v_2

Definition: A degree of a vertex $v \in V$ is the number of edges adjacent to it

Example



$$\deg(a) = 2$$

$$\deg(b) = 4$$

$$\deg(c) = 3$$

The hand shake lemma: The sum of degrees of all vertices in a (finite) graph G is an even number.

$$2 + 4 + 3 + 3 + 4 + 2 = 18.$$

One line proof: Sum of degrees of all vertices is equal to twice the number of edges. \blacksquare

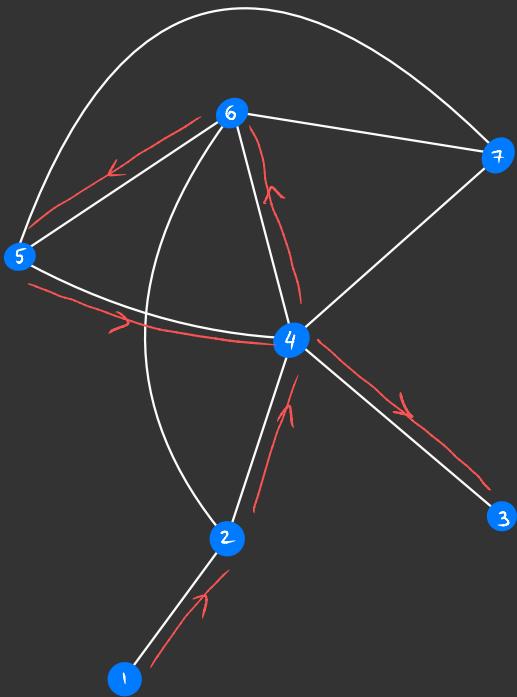
Walks and pathes

Definition: A walk is a graph G is a sequence of nodes v_0, v_1, \dots, v_k such that v_0 is adjacent to v_1 , v_1 is adjacent to v_2 , v_2 is adjacent to v_3 , etc; any two consecutive nodes in the sequence must be connected by an edge.

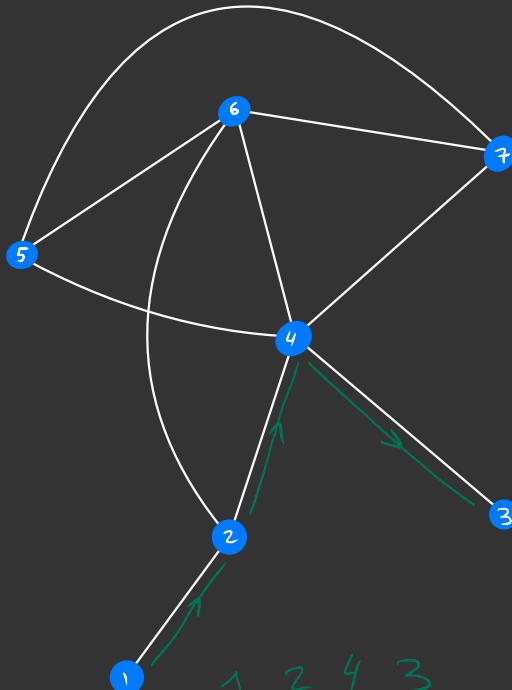
A path is a walk such that all its vertices are distinct.

A closed walk is a walk such that the first vertex v_0 coincides with the last one v_k .

Examples

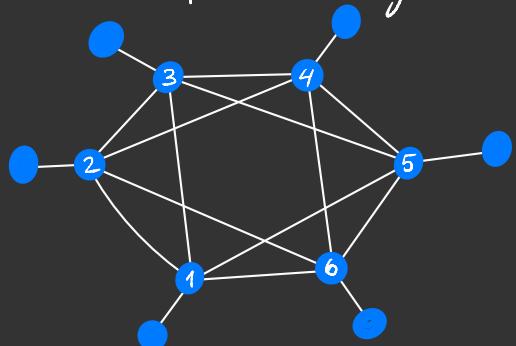


A walk



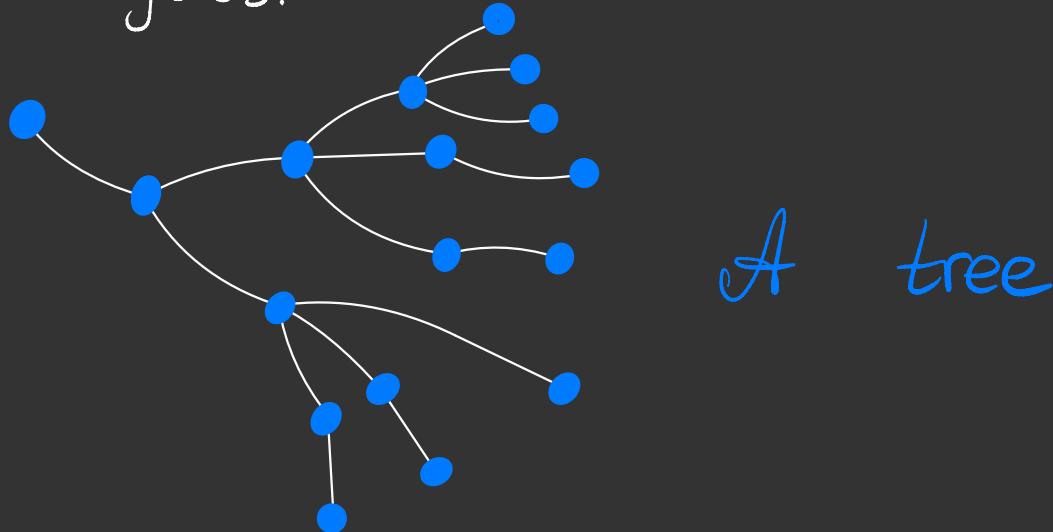
Definition: A graph $G = (V, E)$ is connected if for every two vertices $u, v \in V$ there exists a path in G between them.

Definition: A cycle in a graph $G = (V, E)$ is a sequence of distinct vertices $v_1, \dots, v_r \in V$ with $r \geq 3$ such that v_1 is adjacent to v_2 , v_2 is adjacent to v_3, \dots, v_{r-1} is adjacent to v_r and moreover v_r is adjacent to v_1 .



1, 2, 3, 4, 5, 6 is a cycle

Definition: A tree is a connected graph without cycles.



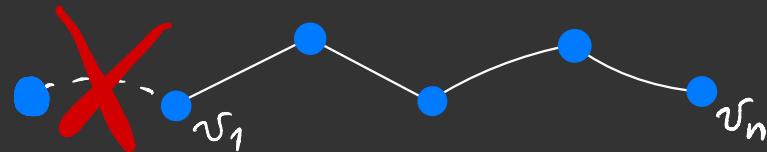
Definition: A vertex of degree 1 in a tree is called a leaf.

Lemma: Every (finite) tree on $n \geq 2$ vertices has at least two leaves.

Proof: Consider a path of maximum length, say v_1, v_2, \dots, v_n .

Tree is connected, therefore such path exists and has length at least 2.

The initial point v_1 and the final point v_n must be leaves, otherwise the path can be extended.



This finishes the proof

Lemma: Every tree on n vertices has exactly $n-1$ edges.

Proof. We prove the lemma by induction on n .

Base of induction: $n=1 \Rightarrow 0$ edges.

Step of induction: Suppose the lemma is true for all trees with $\leq n$ vertices.

Let $T = (V, E)$ be a tree with $n+1$ vertices.

By the previous lemma T has a leave, say $v \in V$.

Let e be the unique edge adjacent to v .

We define a new graph $T' := (V \setminus \{v\}, E \setminus \{e\})$.

New graph T' contains no cycles and is connected $\Rightarrow T'$ is a tree.

By induction hypothesis $|E \setminus \{e\}| = |V \setminus \{v\}| - 1 = n-1$. Therefore $|E| = |V| - 1$ \blacksquare

