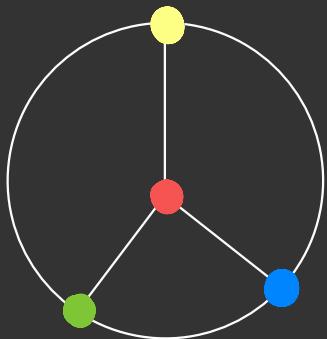
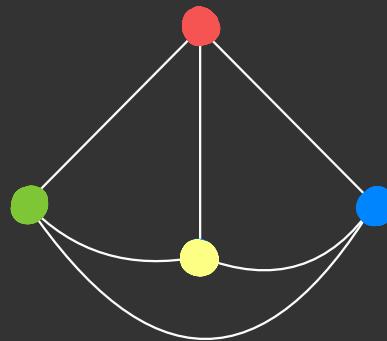


Graph isomorphisms



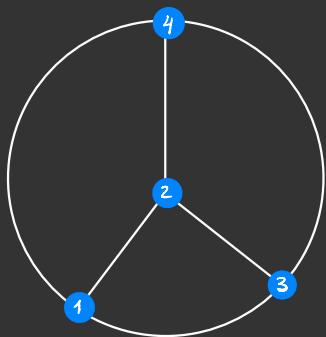
Graph isomorphisms

Two graphs $G = (V, E)$ and $G' = (V', E')$ are considered identical if they have the same set of vertices and the same set of edges, that is $V = V'$ and $E = E'$.

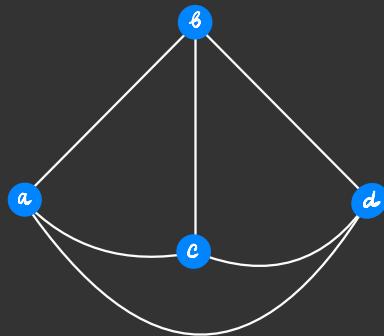
Definition: Two graphs $G = (V, E)$ and $G' = (V', E')$ are called isomorphic if there is a bijection $f: V \rightarrow V'$ such that for all $x, y \in V$:
 $\{x, y\} \in E$ if and only if $\{f(x), f(y)\} \in E'$.

Such an f is called an isomorphism of the graphs G and G' . Notation: $G \cong G'$.

Example



\simeq

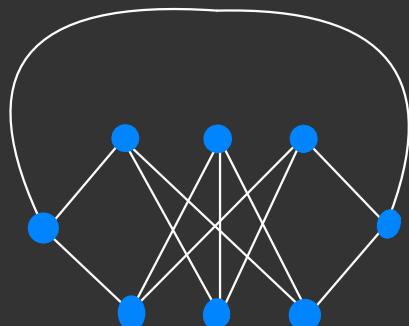


isomorphism

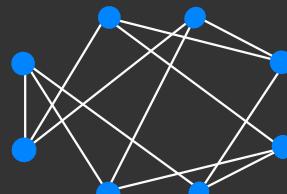
$$\begin{aligned} 1 &\rightarrow a \\ 2 &\rightarrow b \\ 3 &\rightarrow d \\ 4 &\rightarrow c \end{aligned}$$

Remark: In general, deciding whether two graphs are isomorphic is a difficult computational problem.

Finding efficient algorithms is an active research area.



\approx

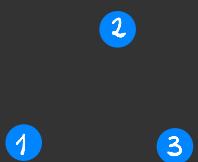
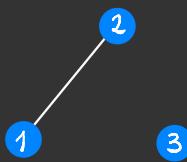
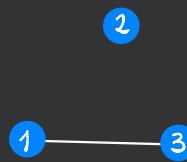
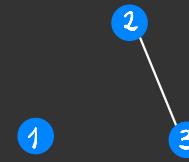
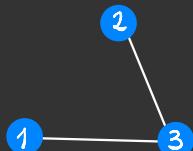
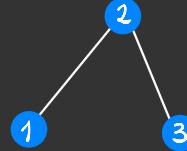
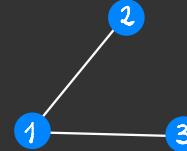
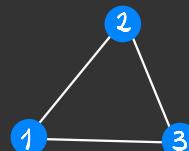


Number of isomorphism classes of graphs

Fix the vertices $\{1, 2, 3\}$

Q: How many different graphs on this vertices are there?

A: $2^{\binom{3}{2}} = 8$

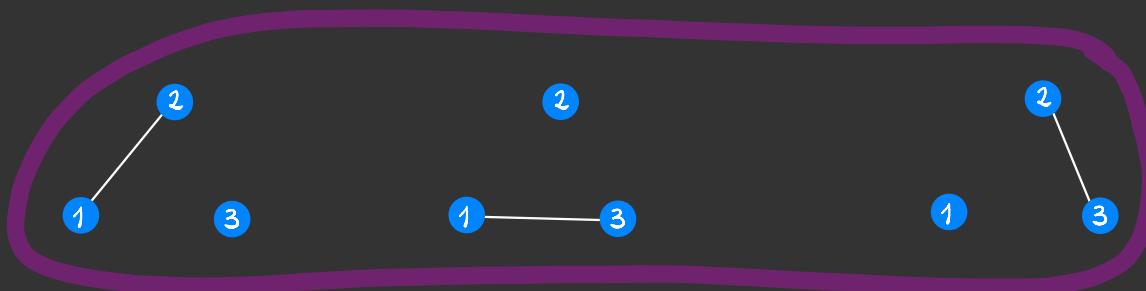
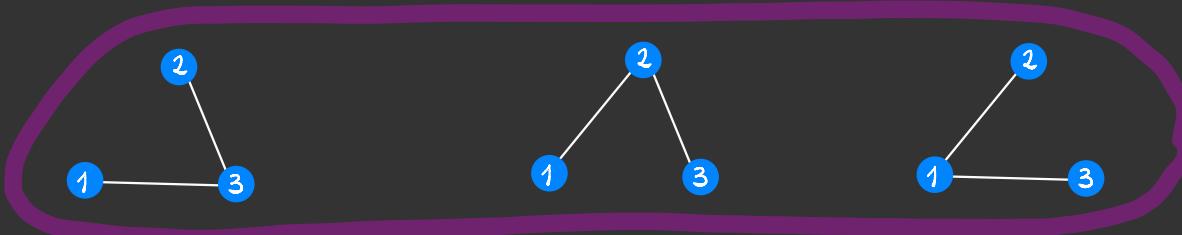
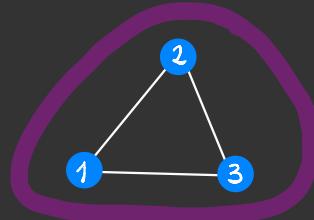


Number of isomorphism classes of graphs

Fix the vertices $\{1, 2, 3\}$

Q: How many isomorphism classes of graphs on this vertices are there?

A: 4



What is the number of isomorphism classes of graphs with vertices $\{1, 2, \dots, n\}$

The number of different graphs is $2^{\binom{n}{2}}$.

Each isomorphism class contains at most $n!$ elements ($n!$ is the number of bijections from $\{1, \dots, n\}$ to $\{1, \dots, n\}$).

Therefore

$$\frac{2^{\binom{n}{2}}}{n!} \leq |\text{isomorphism classes}| \leq 2^{\binom{n}{2}}$$

Notation: An isomorphism class of graphs is also called an **unlabeled graph**.

