

Combinatorial probability

⚠ Disclaimer:

This is not an introduction to probability theory

The goal of this lecture is to emphasize the importance of combinatorial counting and to put it into a new context.

Definition: A finite probability space is a pair (\mathcal{S}, P) where \mathcal{S} is a finite set and $P: 2^{\mathcal{S}} \rightarrow [0, 1]$ is a function assigning a number from the interval $[0, 1]$ to every subset of \mathcal{S} such that:

$$(1) \quad P(\emptyset) = 0$$

$$(2) \quad P(\mathcal{S}) = 1$$

$$(3) \quad P(A \cup B) = P(A) + P(B) \quad \text{for any two disjoint sets } A, B \subseteq \mathcal{S}.$$

Probability theory to set theory dictionary.

The set Ω can be thought as the set of all possible outcomes of some random experiment.

Elements of Ω are called elementary events.

Subsets of Ω are called events.

⚠ "Elementary events" are not "events".

Let $\omega \in \Omega$, $A, B \subseteq \Omega$

$\omega \in A \iff$ event A occurred

$\omega \in A \cap B \iff$ both events A and B occurred

$A \cap B = \emptyset \iff$ events A and B are incompatible

$P(A) \iff$ the probability of event A

Examples of finite probability spaces.

① A random sequence of 0s and 1s

$\Omega = \{0, 1\}^n$ = all n -term sequences of 0s and 1s

$$|\Omega| = 2^n$$

$$\text{For } A \subseteq \Omega \quad P(A) := \frac{|A|}{|\Omega|} = \frac{|A|}{2^n}$$

Consider a set $A \subseteq \Omega$

$$A := \{(w_1, \dots, w_n) \mid w_1 = 1\}$$

A is the event:

„the first element of a random sequence is 1.“

Q: What is a probability of A ?

② A random permutation

$\Omega = S_n =$ set of all permutations of the set $\{1, \dots, n\}$

For $A \subset \Omega$ $P(A) = \frac{|A|}{n!}$

Recall: Hatcheck lady problem

③ A random graph

△ There are many ways to define random graph.
This is only one version:

$\Omega = \mathcal{G}_n :=$ set of all possible (labeled) graphs on vertex set
 $V = \{1, \dots, n\}$.

for $A \subset \mathcal{G}_n$ $P(A) := \frac{|A|}{|\Omega|} = |A| \cdot 2^{-\binom{n}{2}}$.

Proposition: A random graph is almost never a tree, i. e.

$$\lim_{n \rightarrow \infty} P\left(\underbrace{\text{"A graph in } \mathcal{G}_n \text{ is a tree"}}_{\because T_n \subset \mathcal{G}_n}\right) = 0.$$

Proof:

$$P(T_n) = \frac{|T_n|}{|\mathcal{G}_n|}$$

By Cayley's theorem $|T_n| = n^{n-2}$

$$\lim_{n \rightarrow \infty} \frac{n^{n-2}}{2^{\frac{n(n-1)}{2}}} = \lim_{n \rightarrow \infty} e^{-\ln(2) \frac{n(n-1)}{2} + (n-2)\ln(n)} = 0$$

Definition: Two events A, B in probability space (Ω, P) are called independent if

$$P(A \cap B) = P(A) \cdot P(B).$$

Example: Let $\Omega = \{0, 1\}^n$, the prob. space of random sequences
Consider 2 events:

event A : = „the first element of the sequence is 1“

event B : = „the second element of the sequence is 1“

$$A = \{(\omega_1, \dots, \omega_n) \mid \omega_1 = 1\} \subset \Omega$$

$$B = \{(\omega_1, \dots, \omega_n) \mid \omega_2 = 1\} \subset \Omega$$

Events A and B are independent.

Definition: Events $A_1, \dots, A_n \subseteq \mathcal{S}$ are independent if for each set of indices $I \subseteq \{1, \dots, n\}$

$$P\left(\bigcap_{i \in I} A_i\right) = \prod_{i \in I} P(A_i).$$