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Inclusion-Exclusion formula



Theorem (Inclusion-Exclusion formula)

Let A1, . . . ,An be finite sets. Then, the following holds∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ =
∑

1≤i≤n
|Ai | −

∑
1≤i<j≤n

|Ai ∩ Aj | +
∑

1≤i<j<k≤n
|Ai ∩ Aj ∩ Ak | − . . .

+ (−1)n−1|A1 ∩ A2 ∩ · · · ∩ An|.



Example n = 3

|A1 ∪ A2 ∪ A3| = +
∑

1≤i≤3
|Ai | −

∑
1≤i<j≤3

|Ai ∩ Aj |+
∑

1≤i<j<k≤3
|Ai ∩ Aj ∩ Ak |
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Each element of A1 ∪ A2 ∪ A3 is counted exactly once.
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Let B1, . . .Bm be finite sets and w1, . . .wm be real numbers. Then

m∑
i=1

wi |Bi | =
m∑
i=1

∑
b∈Bi

wi =
∑
b∈B

∑
indices i

such that b∈Bi

wi ,

where B =
⋃m

i=1 Bi .



Proof of the inclusion-exclusion formula

Suppose that an element a ∈
⋃n

i=1 Ai belongs to exactly k different sets.
How many times did we count a in the inclusion-exclusion formula∑

1≤i≤n
|Ai | −

∑
1≤i<j≤n

|Ai ∩ Aj | +
∑

1≤i<j<k≤n
|Ai ∩ Aj ∩ Ak | − . . . ?

1-st sum 2-nd sum . . . `-th sum . . .

+
(k
1

)
−
(k
2

)
. . . (−1)`−1

(k
`

)
. . .

We have
n∑

`=1

(−1)`−1
(
k

`

)
= 1.

Therefore, each element a is counted exactly once. This finishes the proof.
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Applications of the formula

1. The hat-check girl problem

A hat-check girl completely loses track of which of n hats belong to which owners, and
hands them back at random to their n owners as the latter leave. What is the
probability pn that nobody receives their own hat back?



Number of permutations without fixed points

Different formulation of the question:

Find the number of permutations of the set [n] without fixed points.

Solution
Let A be the set of all permutations and Ai be the set of permutations of the set [n]
for which i is a fixed point. The number of permutations with no fixed points is

|A| −

∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ .
We apply the inclusion-exclusion principle to compute the cardinality of |

⋃n
i=1 Ai |.



Solution

Cardinalities of intersections
A is the set of all permutations of [n].
Ai is the set of permutations for which i is a fixed point.
Ai ∩ Aj is the set of permutations for which i and j are fixed points.
And so on

One can see that:

|A| = n!

|Ai | = (n − 1)!

|Ai ∩ Aj | = (n − 2)!

|Ai ∩ Aj ∩ Ak | = (n − 3)!

· · ·
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Solution

Altogether, this gives

|A| −

∣∣∣∣∣
n⋃

i=1

Ai

∣∣∣∣∣ = n!−
(
n

1

)
(n − 1)! +

(
n

2

)
(n − 2)!− . . .

= n!− n!(n − 1)!

1!(n − 1)!
+

n!(n − 2)!

2!(n − 2)!
− . . .

= n!(
1

0!
− 1

1!
+

1

2!
− . . .+ (−1)n

1

n!
)

≈ n! exp(−1).

Thus we see that the probability pn that nobody receives their own hat back is

pn =
1

0!
− 1

1!
+

1

2!
− . . .+ (−1)n

1

n!

As n goes to infinity this number converges to 1
e ≈ 0.37.



Applications of the formula. Euler’s totient function

Definition
In number theory, Euler’s totient function φ(n) counts the positive integers up to a
given integer n that are relatively prime to n.

Example 1

Among the numbers {1, 2, 3, 4, 5, 6} only 1 and 5 are coprime to 6. Therefore, we find
that φ(6) = 2.

Example 2

If p is a prime number then φ(p) = p − 1 and φ(pk) = pk − pk−1.



Formula for Euler’s totient function

Proposition

Suppose that a number n has the prime factorization n = pk11 · · · pkmm . Then

φ(n) = n
m∏
i=1

(1− 1

pi
).



Proof

Let A be the set of all numbers in [n] not coprime with n.
Let Ai be the set of all numbers in [n] divisible by pi .
Then A =

⋃m
i=1 Ai and |Ai | = n

pi
, |Ai ∩ Aj | = n

pi pj
, and so on.

By the inclusion-exclusion formula we find

φ(n) =n − |A|

=n −
∑

1≤i≤m

n

pi
+

∑
1≤i<j≤m

n

pipj
−

∑
1≤i<j<k≤m

n

pipjpk
+ . . . = n

m∏
i=1

(1− 1

pi
).


