Discrete mathematics MATH-260
Inclusion-Exclusion formula



Theorem (Inclusion-Exclusion formula)
Let Aq,..., A, be finite sets. Then, the following holds
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Let By, ... B, be finite sets and wy, ... w,, be real numbers. Then
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Proof of the inclusion-exclusion formula

Suppose that an element a € [J7_; A; belongs to exactly k different sets.
How many times did we count a in the inclusion-exclusion formula
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Proof of the inclusion-exclusion formula

Suppose that an element a € [J7_; A; belongs to exactly k different sets.
How many times did we count a in the inclusion-exclusion formula
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Therefore, each element a is counted exactly once. This finishes the proof.



Applications of the formula

1. The hat-check girl problem

A hat-check girl completely loses track of which of n hats belong to which owners, and
hands them back at random to their n owners as the latter leave. What is the
probability p, that nobody receives their own hat back?
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Number of permutations without fixed points

Different formulation of the question:
Find the number of permutations of the set [n] without fixed points.

Solution
Let A be the set of all permutations and A; be the set of permutations of the set [n]

for which i is a fixed point. The number of permutations with no fixed points is

n
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We apply the inclusion-exclusion principle to compute the cardinality of |[J7_; Aj|.



Solution

Cardinalities of intersections

A is the set of all permutations of [n].

A; is the set of permutations for which i is a fixed point.

A; M A; is the set of permutations for which i and j are fixed points.
And so on



Solution

Cardinalities of intersections

A is the set of all permutations of [n].

A; is the set of permutations for which i is a fixed point.

A; M A; is the set of permutations for which i and j are fixed points.
And so on

One can see that:

|A| = n!
[Ail = (n—1)!
|A,'ﬂAj| = (n—2)!
|AiﬂAjﬁAk| :(n—3)!



Solution

Altogether, this gives

Al =

1 1 1 1
~ n! exp(—1).

Thus we see that the probability p, that nobody receives their own hat back is
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As n goes to infinity this number converges to % ~ 0.37.



Applications of the formula. Euler’s totient function

Definition
In number theory, Euler’s totient function ¢(n) counts the positive integers up to a
given integer n that are relatively prime to n.

Example 1

Among the numbers {1,2,3,4,5,6} only 1 and 5 are coprime to 6. Therefore, we find
that ¢(6) = 2.

Example 2

If p is a prime number then ¢(p) = p — 1 and ¢(p¥) = p¥ — p¥—1.



Formula for Euler's totient function

Proposition

Suppose that a number n has the prime factorization n = pfl - pkm Then
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Proof

Let A be the set of all numbers in [n] not coprime with n.
Let A; be the set of all numbers in [n] divisible by pi-
Then A=J; A; and |A;| = 2, |A;iNAj| = 5", and so on.

By the inclusion-exclusion formula we find
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