Discrete mathematics MATH-260

Birthday paradox

or probabilistic pigeonhole principle



Question
Suppose that there are 25 students in a math class. What are the chances that there is
a pair of students who share the same birthday?
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Solution

Imagine a list of students birthdays:
Abice 29 02
Bob 1. 08

Charbotte 0101

Number of possible lists is 3662°.
Number of lists without coincidences is 366 - 365 - - - 342.



About probability of birthdays

Idealized assumptions
» Birthdays are uniformly distributed over 366 days.
» Birthdays or different people are independent events.

» Corollary: all birthday lists are equally likely.

Answer
The answer to our question is given by the formula:

366 365 (366 — 24)

P=1
36625



Estimate the probability of a coincidence

Theorem

Suppose that k < n are positive integers and each of k different people chooses 1
element from the set [n]. Their choices are uniformly random and independent. Then
the probability P = m that they have chosen k different elements can be
estimated as
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Two inequalities for the logarithm

Lemma
For x > 0, 1
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Proof of the proposition

Now we estimate
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Proof of the proposition

Also we find
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Proof of the proposition

Applying the exponential function to both sides of our estimates we get the following:
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This finishes the proof.



So the answer to the question in the beginning of this video is between 55.94% and
58.40%. More precisely, the probability is about 56.77%.



