

Discrete mathematics MATH-260

# **Basics of counting**

**formalized by set theory**

# Finite sets

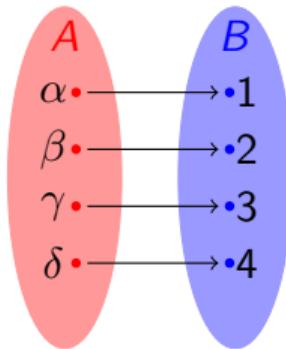
## Notation

Let  $A$  be a finite set. We denote by  $|A|$  the *cardinality* of  $A$ , i. e. the number of elements in the set.

## Definition

Denote by  $[n]$  the set of first  $n$  natural numbers:  $[n] := \{1, 2, \dots, n\}$ .

## Bijections (or 1 : 1 correspondences)



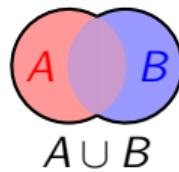
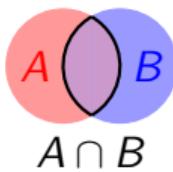
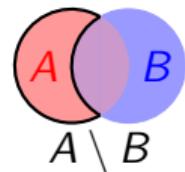
### Theorem

If there exists a bijection between finite sets  $A$  and  $B$  then  $|A| = |B|$ .

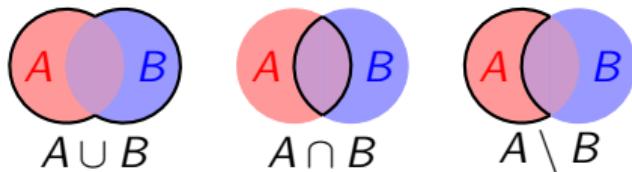
## Operations with finite sets

- ▶ union
- ▶ intersection
- ▶ product
- ▶ exponentiation
- ▶ quotient

## Union, intersection, set difference



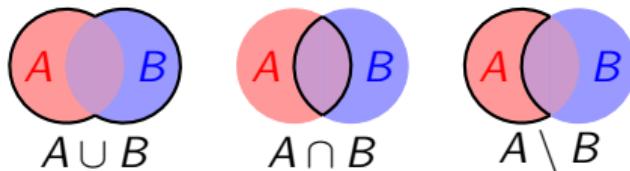
## Union, intersection, set difference



### Exercise

Suppose that you know  $|A|$  and  $|B|$ . What can you say about  $|A \cup B|$ ,  $|A \cap B|$ , and  $|A \setminus B|$ ?

## Union, intersection, set difference



### Exercise

Suppose that you know  $|A|$  and  $|B|$ . What can you say about  $|A \cup B|$ ,  $|A \cap B|$ , and  $|A \setminus B|$ ?

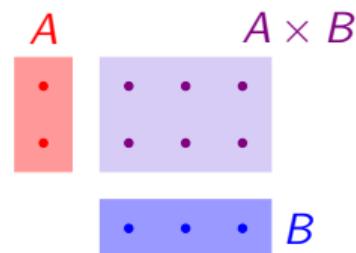
### Addition rule

If  $A \cap B = \emptyset$  then  $|A \cup B| = |A| + |B|$ .

# Cartesian product

## Definition

$$A \times B = \{(a, b) \mid a \in A, b \in B\}$$



## Product rule

$$|A \times B| = |A| \cdot |B|.$$

## Disjoint union

$$A \sqcup B = A \times \{0\} \cup B \times \{1\}$$



## Theorem

$$|A \sqcup B| = |A| + |B|.$$

## Exponential object

### Definition

$$A^B := \{f \mid f \text{ is a function from } B \text{ to } A\}$$

### Theorem

$$|A^B| = |A|^{|B|}$$

## Exponential object

### Definition

$$A^B := \{f \mid f \text{ is a function from } B \text{ to } A\}$$

### Theorem

$$|A^B| = |A|^{|B|}$$

### Exercise

What is the number of  $n$ -letter words in an  $m$ -letter alphabet?

## Exponential object

### Definition

$$A^B := \{f \mid f \text{ is a function from } B \text{ to } A\}$$

### Theorem

$$|A^B| = |A|^{|B|}$$

### Exercise

What is the number of  $n$ -letter words in an  $m$ -letter alphabet?

### Exercise

The set of subsets of a set  $A$  is often denoted by  $2^A$ . Can you guess why?

## Example: number of permutations

### Definition

A permutation  $\pi$  of a set  $A$  is a bijection  $\pi : A \rightarrow A$

### Notation

The set of permutations of  $[n]$  is denoted by  $S_n$ .

### Theorem

$$|S_n| = n!$$

## Example: number of permutations

### Definition

A permutation  $\pi$  of a set  $A$  is a bijection  $\pi : A \rightarrow A$

### Notation

The set of permutations of  $[n]$  is denoted by  $S_n$ .

### Theorem

$$|S_n| = n!$$

### Exercise

Construct a  $1 : 1$  map between  $S_n$  and the product  $[1] \times [2] \times \cdots \times [n]$ .

## Counting techniques

- ▶ Combinatorial method (seen today)
- ▶ Induction
- ▶ Generating series
- ▶ Linear algebra method
- ▶ Probabilistic method