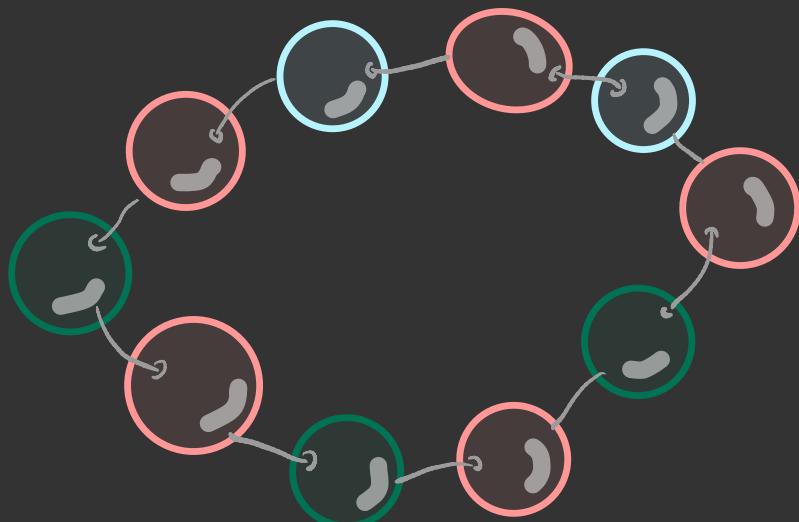


Computing the number of cyclic sequences



Definition: Let A be a set. A linear sequence of length n in alphabet A is an element of A^n :

$$a = (a_1, \dots, a_n), \quad a_k \in A \quad \text{for } k=1, \dots, n.$$

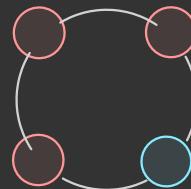
The number of linear sequences of length n in an alphabet of size r is r^n .

Consider the following equivalence relation on the set of linear sequences:

$$(a_1, \dots, a_n) \sim (a_2, a_3, \dots, a_n, a_1)$$

Two linear sequences are equivalent if one of them can be obtained from another by a cyclic shift.

Example:



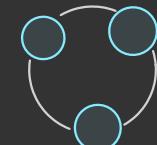
Definition: A cyclic sequence of length n in alphabet \mathcal{A} is an equivalence class of linear sequences with respect to the relation \sim .

Example: There are 8 linear sequences of length 3 in alphabet $\{a, b\}$ and only 4 cyclic sequences

aaa

aab
 aBa
 Baa

abb
 Bab
 Bba



bbb

Proposition: The number $T(n, r)$ of cyclic sequences of length n on an alphabet of size r is

$$T(n, r) = \frac{1}{n} \sum_{d|n} \phi(n/d) r^d$$

Here $\phi(\cdot)$ is the Euler's totient function.

Proof:

Definition: A period of a cyclic sequence (a_1, \dots, a_n) is a minimal number $k \in \{1, 2, \dots, n\}$ such that

$$(a_1, a_2, \dots, a_n) = (a_{1+k}, a_{2+k}, \dots, a_1, a_2, \dots, a_k)$$

are equal as linear sequences.

Exercise: The period of a sequence is a divisor of the sequences length.

Let $M(d, r)$ be the number of cyclic sequences of length d and period exactly d

Example:



aaa

Period 1

aab
aBa
Baa

Period 3

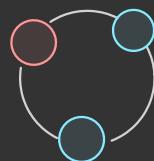


abB
Bab
BBA

Period 3



BBB

Period 1

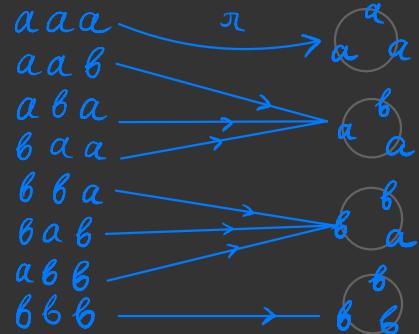
$$T(3, 2) = 4$$

$$M(3, 2) = 2$$

The following identity holds:

$$r^n = \sum_{d|n} d \cdot M(d, r)$$

$\left\{ \begin{array}{l} \text{linear sequences} \\ \text{of length } n \\ \text{in alphabet } [r] \end{array} \right\} \xrightarrow{\text{projection} \atop \text{into} \atop \text{equivalence} \atop \text{class}} \left\{ \begin{array}{l} \text{Cyclic sequences} \\ \text{of length } n \\ \text{in alphabet } [r] \end{array} \right\}$



$\coprod_{d|n} \left\{ \begin{array}{l} \text{Cyclic sequences} \\ \text{of length } n \\ \text{and period } d \\ \text{in alphabet } [r] \end{array} \right\}$

The number of preimages of a cyclic sequence under the map π is d , the period of the sequence.

Therefore $|\mathcal{L}(n, r)| = \sum_{d|n} d \cdot |\mathcal{M}(d, r)|$

$\mathcal{L}(n, r)$ set of linear sequences $\mathcal{M}(d, r)$ set of cyclic sequences of length d and period d .

This proves the claim.

Starting with the identity

$$r^n = \sum_{d|n} d \cdot M(d, r)$$

we apply the Möbius inversion formula and obtain

$$n \cdot M(n, r) = \sum_{d|n} \frac{\mu(d) r^{n/d}}{\mu(d/n) r^d} \quad (1)$$

Each cyclic sequence has well defined period d and it corresponds to the unique cyclic sequence of length d and period d .

$$(a_1, \dots, a_d, a_1, \dots, a_d, \dots, a_1, \dots, a_d) \sim (a_1, \dots, a_d)$$

Thus $T(n, r) = \sum_{d|n} M(d, r).$ (2)

Now we substitute (1) into (2):

$$T(n, r) = \sum_{d|n} M(d, r)$$

$$= \sum_{d|n} \frac{1}{d} \sum_{d'|d} \mu(d/d') r^{d'} \quad \text{=} \quad$$

we introduce the new summation variable $d'' = \frac{d}{d'}$

$$\text{=} \sum_{d'|n} \left(\sum_{d''| \frac{n}{d'}} \frac{1}{d' \cdot d''} M(d'') \right) \cdot r^{d'}$$

Now it remains to compute the sum:

$$\sum_{d''| \frac{n}{d'}} \frac{1}{d''} M(d'')$$

Exercise: Show that for $n \in \mathbb{Z}_{\geq 1}$, $\sum_{d|n} \frac{1}{d} M(d) = \frac{\varphi(n)}{n}$

Using this exercise we compute

$$T(n, r) = \sum_{d' \mid n} \frac{\varphi(n/d')}{n} \cdot r^{d'}$$

This finishes the proof.

There is another method to compute the number of cyclic sequences using the Burnside's lemma.