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Consider  the  follo wing  equi vabwe Telatin on the set of
Cinear  sequonces;
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another 53( a cycbe Slift.
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Definition; oF cyche  sepuence of tugth 1 m alphabet A
15 e equivabumce  class of Ghear Sepuens with vespect
Lo the relation .

Example: There are € Gnear sequsce) of buth 3 in alphabet {a,6]
omd. Onlg 4 cyclbic Seqnenws

aab 0,58 oR®
aaa aba 66{6 68
@ @ Baa Féo \Q)
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T = %% P(n/d) .
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Here P DIRE the Ewler's totieut Function.
Proof:
ggeja,'m'{-,'on; % Pem’od QJ[ 4 Cﬂ&@'c Sequence ( Ay a, )
is a minimal wumber REA12. N} cuch that
( A4, e ..., a, ) = (d“k/ﬁ 672),_,14,<>
ore eywaé, as twear < equences,

Z?‘K/ ped < Q//)

E xercise : The period of a sequence. 15 a divisor of the seguences
blength.
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gxample
aab 0,66
aa 360,
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Tl’lé’— muumber of Frefwlagee of a Cgolr'c 5671161/166 wnder
+the_ map  JT 45 o ) the Pen'oa/ of the Sequence

Therefore \ o(,("\ﬂ’)\ = Z - ’M(D(,F)I

set of linecr sel of welc
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This pcoves the clajn . and period 4.
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Each cychic  sequence hac  well defined Ioem'oaf ,;/ ad it

wrregpona/s to the Lenigue cyoéf’c Sequence.  of leath d ~ amd pef’/D’/ d
(5(4)") av()ﬂ7 ﬂ,( a’l ﬂa( ) 2 (q”’) ) QVL)
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Tws Ty = L Mcde, ()

dln
Now we  substitute 1) anto (2):



T(V\,r) = L MCO( )
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Now
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introduce the new Summation variable gé =

@z <0L”J” Ao /‘4(0[//)> T

it vemans 1 compule the  sum:
L = ped)

Ty .

Show that for ne'Z,, 2 1 MY =
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This JCz'm isheg the Pro@f :
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