

Generating functions

Combinatorial applications of
polynomials

Philosophical observation:

Natural numbers and finite sets
are two sides of the same coin

Another observation:

Arithmetic operations and operations with
finite sets have many similarities.

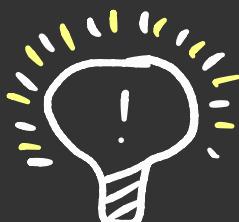
Example:

$$(a + b) \cdot c = a \cdot c + b \cdot c$$

$$(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$$

→ algebra & analysis

Idea: Use the power of arithmetic manipulations
to speed up combinatorial computations.



Combinatorial applications of polynomials

Example: How many ways are there to pay the amount of 21 franks with

6 one-francs coins

5 two-francs coins ?

4 five-francs coins ?

Solution: The number in question is the number of solutions of

$$x_1 + x_2 + x_3 = 21 \quad (\star)$$

$x_1 \in \{0, 1, 2, \dots, 6\}$, $x_2 \in \{0.2, 1.2, \dots, 5.2\}$, $x_3 \in \{0.5, 1.5, 2.5, 3.5, 4.5\}$

Consider the following polynomials

$$P_1(x) = 1 + x + x^2 + x^3 + x^4 + x^5 + x^6$$

$$P_2(x) = 1 + x^2 + x^4 + x^6 + x^8 + x^{10}$$

$$P_3(x) = 1 + x^5 + x^{10} + x^{15} + x^{20}$$

The number of solutions of (\star) is the coefficient of x^{21} in the product $P_1(x) \cdot P_2(x) \cdot P_3(x)$.

Operations with polynomials

$$P(x) = \sum_{k=0}^n a_k x^k \quad Q(x) = \sum_{k=0}^n b_k x^k$$

1. Addition

$$(P+Q)(x) = \sum_{k=1}^n (a_k + b_k) x^k$$

2. Multiplication

$$P(x) \cdot Q(x) = \sum_{k=1}^{2n} (a_0 b_k + a_1 b_{k-1} + \dots + a_k b_0) x^k$$

3. Substitution

$$P(Q(x)) = a_0 + a_1 \cdot Q(x) + a_2 \cdot Q(x)^2 + \dots + a_n \cdot Q(x)^n$$

4. Differentiation

$$\frac{d}{dx} P(x) = \sum_{k=1}^n a_k \cdot k \cdot x^{k-1} = \sum_{k=0}^{n-1} (k+1) a_{k+1} x^k$$

5. Integration

$$\int_0^x P(y) dy = \sum_{k=0}^n a_k \frac{x^{k+1}}{k+1} = \sum_{k=1}^{n+1} \frac{a_{k-1}}{k} \cdot x^k$$

Identities with binomial coefficients.

Example: Prove the identity

$$\sum_{i=0}^n \binom{n}{i}^2 = \binom{2n}{n}$$

Solution. Consider the identity

$$(1+x)^n \cdot (1+x)^n = (1+x)^{2n} \quad (\text{*)(})$$

Now we compute the coefficient of x^n on the left-hand side and on the right-hand side of (*)()

on the left:

$$(1+x)^n \cdot (1+x)^n = \left(\binom{n}{0} + \binom{n}{1}x + \dots + \binom{n}{n}x^n \right) \cdot \left(\binom{n}{0} + \binom{n}{1}x + \dots + \binom{n}{n}x^n \right)$$

coefficient of x^n :

$$\binom{n}{0}\binom{n}{n} + \binom{n}{1}\binom{n}{n-1} + \dots + \binom{n}{n}\binom{n}{0} = \binom{n}{0}^2 + \binom{n}{1}^2 + \dots + \binom{n}{n}^2$$

on the right:

$$(1+x)^{2n} = \binom{2n}{0} + \binom{2n}{1}x + \dots + \binom{2n}{n}x^n + \dots + \binom{2n}{2n}x^{2n}$$

This finishes the proof.

One more identity with binomial coefficients.

Example: Compute $\sum_{k=0}^n k \cdot \binom{n}{k}$.

Solution:

Consider the polynomial $P(x) = (1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k$

Differentiate $P(x)$:

$$\frac{d}{dx} P(x) = \frac{d}{dx} \left[(1+x)^n \right] = n (1+x)^{n-1}$$

On the other hand:

$$\frac{d}{dx} P(x) = \frac{d}{dx} \left[\sum_{k=0}^n \binom{n}{k} x^k \right] = \sum_{k=1}^n k \binom{n}{k} x^{k-1}$$

Thus: $\sum_{k=1}^n k \binom{n}{k} x^{k-1} = n (1+x)^{n-1}$

Substitute $x = 1$: $\sum_{k=1}^n k \binom{n}{k} = n \cdot 2^{n-1}$

Multinomial theorem.

Theorem: The following holds:

$$(x_1 + x_2 + \dots + x_n)^k = \sum_{\substack{i_1, i_2, \dots, i_n \geq 0 \\ i_1 + i_2 + \dots + i_n = k}} \frac{k!}{i_1! i_2! \dots i_n!} x_1^{i_1} x_2^{i_2} \dots x_n^{i_n}$$

Proof: $\frac{k!}{i_1! i_2! \dots i_n!}$ is the number of sequences of length k from letters $"x_1", "x_2", \dots, "x_n"$.

such that letter $"x_1"$ is used i_1 - times

$"x_2"$ is used i_2 - times

\vdots

$"x_n"$ is used i_n - times.

We prove the theorem by induction by n .

Basis of induction: $n = 2$ Binomial theorem.

Step of induction:

Suppose that $(x_1 + \dots + x_n)^k = \sum_{\substack{i_1, \dots, i_n \geq 0 \\ i_1 + \dots + i_n = k}} \frac{k!}{i_1! i_2! \dots i_n!} x_1^{i_1} x_2^{i_2} \dots x_n^{i_n}$

$$\begin{aligned} ((x_1 + \dots + x_n) + x_{n+1})^k &= \sum_{i=0}^k \binom{k}{i} (x_1 + \dots + x_n)^{k-i} x_{n+1}^i \\ &= \sum_{i=0}^k \left(\sum_{\substack{i_1, \dots, i_n \geq 0 \\ i_1 + \dots + i_n = k-i}} \frac{(k-i)!}{i_1! i_2! \dots i_n!} x_1^{i_1} x_2^{i_2} \dots x_n^{i_n} \right) \binom{k}{i} x_{n+1}^i \end{aligned}$$

$$i = i_{n+1}$$

$$\begin{aligned} &= \sum_{\substack{i_1, \dots, i_{n+1} \geq 0 \\ i_1 + \dots + i_{n+1} = k}} \frac{(k-i_{n+1})!}{i_1! i_2! \dots i_{n+1}!} \cdot \frac{k!}{(k-i_{n+1})! i_{n+1}!} \cdot x_1^{i_1} x_2^{i_2} \dots x_n^{i_n} \cdot x_{n+1}^{i_{n+1}} \end{aligned}$$