
Exercise Set Solutions #6
“Discrete Mathematics” (2025)

E1. Prove the following identities for Fibonacci numbers. In each identity below n ≥ 1.

(a) F1 + F3 + F5 . . .+ F2n−1 = F2n.

(b) F2n+1 = 3F2n−1 − F2n−3.

(c) Fa+b+1 = Fa+1Fb+1 + FaFb.

(d) gcd (Fn, Fn+1) = 1.

Solution: (a) Let n = 1. From the definition we know F2 = F1 + F0 and F0 = 0. Hence
F2 = F1 and the (a) holds for n = 1. Let us assume (a) holds for n − 1. By definition of
Fibonacci series Fn = Fn−1 + Fn−2 and due to the assumption

F1 + F3 + F5 . . .+ F2n−3 = F2n−2.

Therefore,
F2n = F2n−1 + F2n−2 = F2n−1 + F1 + F3 + F5 . . .+ F2n−3.

(b) By using Fn = Fn−1 + Fn−2 we get

F2n+1 = F2n + F2n−1 = 2F2n−1 + F2n−2

= 2F2n−1 + F2n−1 − F2n−3 = 3F2n−1 − F2n−3.

(c) We will show Fn+m = Fn−1Fm + FnFm+1 by induction over m. Let m = 1 then Fn =
Fn−1 + Fn = Fn−1F1 + FnF2 since F1 = F2 = 1. For m = 2, we have

Fn−1F2 + FnF3 = Fn−1F2 + FnF2 + FnF1 = Fn+1F2 + FnF1 = Fn+1 + Fn = Fn+2.

Assume the statement holds up to m− 1. We show that it also holds for m

Fn+m = Fn+m−1 + Fn+m−2

= Fn−1Fm−1 + FnFm + Fn−1Fm−2 + FnFm−1

= Fn−1 (Fm−1 + Fm−2) + Fn (Fm + Fm−1)

= Fn−1Fm + FnFm+1

By setting a = n− 1 and b = n, we have Fa+b+1 = Fa+1Fb+1 + FaFb.
(d) We do an induction on n. For n = 1, it is clear. In general, if d = gcd (Fn, Fn+1) =
gcd (Fn, Fn + Fn−1), then d would have to divide both Fn−1 and Fn, but gcd (Fn−1, Fn) = 1 ,
so d = 1.

E2. Prove that any positive integer can be written as a sum of mutually distinct Fibonacci num-
bers.

Solution: In this solution we will call a decomposition of m ∈ N a set of mutually distinct
Fibonacci numbers such that they sum up to m.

Let f(n) be the greatest Fibonacci number Fi such that Fi ≤ n. We can easily check that 0 is
the sum of 0 distinct Fibonacci numbers. Then if we have a decomposition for all 0 ≤ m < n,
this means that we have a decomposition for n − f(n) as f(n) is strictly positive. Thus the



decomposition of n is the decomposition of n − f(n) except we add f(n) to it. This is a
valid decomposition as ∀n ∈ N∗f(n) > n

2 because Fibonacci numbers are a strictly increasing
sequence after they leave 1 , and thus f(n) cannot appear in the decomposition of n − f(n)
because f(n) > n− f(n) and Fibonacci numbers are positive.

E3. Consider the sequence (a0, a1, a2 . . .) with a0 = 1, a1 = 2, a2 = 3 and

ak+1 = 5ak − 8ak−1 + 4ak−2

for k ≥ 2. Find an expression for the value of ak. What is its generating function?

Solution: Using the theorem for linear recurrences we want to solve the equation x3 = 5x2 −
8x + 4. This equation is equivalent to (x − 1)(x − 2)2. Therefore we have the root 1 with
multiplicity one and root 2 with multiplicity 2 . The coefficients in the sequence therefore are
of the form an = c0(1)

n + (c1n+ c2) 2
n. Using the initial conditions a0 = 1, a1 = 2, a2 = 3 we

have to solve the following equations to obtain the values for c0, c1 and c2 :

1 = a0 = c0 + c2

2 = a1 = c0 + (c1 + c2) · 2
3 = a2 = c0 + (2c1 + c2) · 22

This has the solution c0 = −1, c1 =
−1
2 , c3 = 2. Therefore the values ak have the form

ak = −1 +

(
−k

2
+ 2

)
2k.

For the generating function a(x) we get from the recurrence relation and initial conditions that

a(x) = 1 + 2x+ 3x2 + 3x3 − 1x4 +−17x5 . . .+ anx
n + . . .

−5xa(x) = 0− 5x− 10x2 − 15x3 − 15x4 + 5x5 . . .− 5an−1x
n + . . .

8x2a(x) = 0 + 0x+ 8x2 + 16x3 + 24x4 + 24x5 . . .+ 8an−2x
n + . . .

−4x3a(x) = 0 + 0x+ 0x2 − 4x3 − 8x4 − 12x5 . . .− 4an−3x
n + . . .

Hence
(
1− 5x+ 8x2 − 4x3

)
a(x) = 1− 3x+ x2 and therefore a(x) = 1−3x+x2

1−5x+8x2−4x3 .

E4. What is the generating function of the sequence ( a0, a1, a2 . . . ) with a0 = 1, a1 = 3 and ak =
3ak−1 − 2ak−2 for k ≥ 2 ?

Solution: Since

a(x) = 1 + 3x+ 7x2 + 15x3 + 31x4 + . . .+ anx
n + . . .

−3xa(x) = 0− 3x− 9x2 − 21x3 − 45x4 + . . .− 3an−1x
n + . . .

2x2a(x) = 0 + 0x+ 2x2 + 6x3 + 14x4 + . . .+ 2an−2x
n + . . .

we have
(
1− 3x+ 2x2

)
a(x) = 1. Therefore a(x) = 1

1−3x+2x2 .

E5. Suppose that a0 = 2, a1 = 8 and for n ≥ 0 we have an+2 =
√
anan+1. Can you write an expression

for the general an ? What is limn→∞ an ?
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know that an > 0, by induction. So we can consider xn = log2 an. Then x0 = 1, x1 = 1 and
for n ≥ 0 we have xn+2 = 1

2 (xn + xn+1). The characteristic polynomial of this recurrence is
x2 = 1

2(x+1). But note that 2x2−x−1 = 2x2−2x+x−1 = (x−1)(2x+1), and by adjusting
the constants, we get

xn =
7

3
1n − 4

3

(
−1

2

)n

⇒ an = 2
7
3
− 4

3(−
1
2)

n

.

Finally, when n → ∞ we get limn→∞ an = 2
7
3 .

E6. Let a(n, k) = #{A ⊂ [n] : |A| = k,A does not contain two consecutive elements}.

(a) Prove that
a(n, k) = a(n− 1, k) + a(n− 2, k − 1) for k ≥ 2

and use it to compute the generating functions Ak(x) =
∑

n≥1 a(n, k)x
n.

Solution: We prove the recurrence equation using combinatorial method. For A ⊆ [n]
with |A| = k with no two consecutive elements, if n /∈ A then A ⊆ [n − 1] and there is
a(n− 1, k) ways of choosing A. If n ∈ A then n− 1 /∈ A by hypothesis, A \ {n} ⊆ [n− 2],
and thus there is a(n− 2, k − 1) ways of choosing A. Of course, this only works if k ≥ 2.
We conclude that

a(n, k) = a(n− 1, k) + a(n− 2, k − 1) for k ≥ 2.

Now, notice that the generating function of (a) satisfies for k ≥ 2

Ak(x) = xAk(x) + x2Ak−1(x)

which leads to

Ak(x) = Ak−1(x)
x2

1− x
.

Hence, we get that for k ≥ 2

Ak(x) =

(
x2

1− x

)k−1

A1(x) =

(
x2

1− x

)k
1

x(1− x)
,

where

A1(x) =

∞∑
n=0

nxn =
x

(1− x)2
and A0(x) =

∞∑
n=0

xn =
1

1− x
.

(b) Use item (a) to prove that ∑
k≥0

(
n− k + 1

k

)
= Fn+2

Solution: First, it is easy to note that an,k =
(
n−k+1

k

)
. Thus, it is enough to prove that
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the generating function of the sequence n 7→ Fn+2 is

∑
k≥0

Ak(x) =
1

x(1− x)

∑
k≥1

(
x2

1− x

)k

+
1

1− x

=
1

x(1− x)

∑
k≥0

(
x2

1− x

)k

− 1

+
1

1− x

=
1

x(1− x)

(
1

1− x2

1−x

− 1

)
+

1

1− x

=
1 + x

1− x− x2
.

In fact, if we denote F (x) the generating function of the Fibonnaci sequence, we get that
the generating function of n 7→ Fn+2 is∑

n≥0

xnFn+2 =
1

x2

∑
n≥0

xn+2Fn+2

=
1

x2
(
F (x)− xF1 − x0F0

)
=

1

x2

(
x

1− x− x2
− x

)
=

1 + x

1− x− x2

concluding.
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