Exercise Set Solutions #12
“Discrete Mathematics” (2025)

E1. Recall the definition of the Ramsey numbers: We define R(k,l) to be the minimum number
of vertices n required to guarantee that any graph with n vertices has a clique of size k£ or an
independent set of size [. Prove that & <k’ and [ <" implies R(k,l) < R (K',l').

Solution: We know that for a graph with R (k,1’) vertices we can find a clique of size k' or
an independent set of size I’ by the definition of the Ramsey numbers. Since k < k' and [ < I
we can also find a clique of size k or an independent set of size . Therefore R(k,1) < R (k',l’).

E2. (a) Show that the Ramsey number R(3,3) is 6.

(b) Let G be a graph with at least (kﬁ_f) vertices. Show that there is a clique of size k or an
independent set of size (.

Solution:

(a) For 5 vertices we can construct a graph that neither have a clique of size 3 nor an indepen-
dent set of size 3 , for example a pentagon. To prove that every graph G with 6 vertices
has a clique of size 3 or an independent set of size 3 we do the following: Color all edges
of G blue and complete the graph with red edges. Note that now a clique of red edges
corresponds to an independent set in the original graph. Now pick a vertex v. There are
5 edges incident to v. By the pigeonhole principle at least 3 of them must have the same
colour. Without loss of generality we consider the 3 edges to be blue (if not we can switch
the colors). We assume they connect v to the vertices u,w and r. If any of the edges
(uw), (ur), (rw) exists, we found a clique of size 3 . If none of these edges exist we found
the independent set u, w,r of size 3 . In either case this proves the claim.

(b) This is Ramseys theorem. We show the finitenes of the Ramsey numbers. We want to
adapt the above idea and proceed by induction on k + [. We therefore color the existing
edges blue again and complete the graph by adding red edges. For k = 1 or [ = 1 the claim
holds: We know that (kZiIQ) = (Hé*Q) = 1 and every graph with at least one vertex has
a clique and an independent set of size 1 . Now let k,I > 2 and consider a graph with

= (kZiEQ) vertices. We know by the induction hypothesis that the statement holds for
k,I—1 and for k£ —1,[ in graphs with n; = (k;i_lg) and respectively no = (k:igg) vertices.

We know from Pascals triangle that n = n; + ny. We again choose a random vertex v. It
has n edges incident to it. By the pigeon hole principle we have that either the number of
red edges incident to it is > nq or the number of blue edges is > ng. If we have at least n;
red edges incident to it, we use the induction hypothesis for (k,I — 1). By the induction
hypothesis we have either a blue clique of size k (in this case we are done) or a red clique
of size [ — 1. In this case we can extend the clique with v and obtain a red clique of size [.
For the second case of having at least no blue edges incident to v we proceed analogously.
This finishes the proof.

E3. Let | X| = n with n > 2k. Show that the Erdos-Ko-Rado theorem is sharp, i.e. that there exists
an intersecting family F of k-element subsets of X such that
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Solution: We do this by constructing such a family. Let us fix one point a € X. We choose
the family F to be all (k — 1)-element subsets of X \ {a} and adjoin a to each of these sets. We
then obtain subsets of the size k and since all of our subsets contain a the fmaily is intersecting.

E4. Prove that each tournament has a Hamiltonian path.

Solution: We proceed by induction on the number n of vertices. For n = 2 the statement
is true. Assume the claim holds for every tournament with n — 1 vertices. Consider now a
tournament 7" with n vertices. We choose a random vertex v and group the remaining vertices
into two sets. We call the vertices with edges going to v tournament 77 and the vertices with
edges coming from v tournament 7T5. Now 77 and T, have at most n — 1 vertices since v belongs
to neither of them. Therefore by the induction hypothesis there exists a Hamiltonian path in
T} and Ty. Now take a path in 77, continue it to v (possible by our choice of 77 ) and continue
from v to a path in T,. This gives us a path in T

E5. Prove that in any tournament there exists a vertex v that can be reached from any other vertex
by a directed path of length at most 2.

Solution: We proceed by induction on the number n of vertices. For n = 2 the statement
is true. Assume the claim holds for every tournament with n — 1 vertices. Consider now
a tournament 7' with n vertices. We delete one vertex uw and let v be the vertex from the
induction hypothesis for the tournament T\{u}. If in the tournament 7' the vertex v can be
reached from vertex u in two steps, this proves the claim. If v can not be reached from wu in two
steps, that means that the edge (v,u) from v to w is in the tournament and also all vertices with
an arrow going to v have an arrow going to u. Therefore v can be reached from everywhere
within two steps. This proves the claim.

E6. Let K, denote the complete graph on n vertices. Suppose one colours all the edges of K,, with
one of two colours: red or blue.

(a) Let v € V (K,,) be a vertex. A bad cherry with vertex v is a set of three vertices u,v,w €
V (K,) such that the colour of the edge wv is different from the colour of the edge vw.
If r(v) denotes the number of edges coming out of vertex v which are painted red, show that
the number of bad cherries with vertex v is exactly r(v)(n — 1 — r(v)).

(b) We say that three vertices u,v,w € V (K,) form a monochromatic triangle if the edges
uv, uw,vw all have the same colour. Show that, for any colouring of the edges of K, as
above, the number of monochromatic triangles is at least
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(a) For creating a bad cherry one would need to pick a red edge coming out of v (for which
there are (v) options) and one blue edge coming out of v (for which there are n — 1 —r(v)
options). Thus, we conclude that the number of bad cherries is exactly r(v)(n — 1 —r(v)).

Solution:

(b) We count the number of bad triangles instead. Notice that for each bad triangle there are




2 bad cherries. Thus, the number of bad triangles is
1
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# bad A's = 3 Z r(v)(n—1—r(v)).
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The function x — z(n — 1 — x) is maximized in x = (n — 1)/2, so
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As there are (”) possible triangles, we get that the number of monochromatic triangles is

G

at least:



