

Exercise Set Solutions #12

“Discrete Mathematics” (2025)

E1. Recall the definition of the Ramsey numbers: We define $R(k, l)$ to be the minimum number of vertices n required to guarantee that any graph with n vertices has a clique of size k or an independent set of size l . Prove that $k \leq k'$ and $l \leq l'$ implies $R(k, l) \leq R(k', l')$.

Solution: We know that for a graph with $R(k', l')$ vertices we can find a clique of size k' or an independent set of size l' by the definition of the Ramsey numbers. Since $k \leq k'$ and $l \leq l'$ we can also find a clique of size k or an independent set of size l . Therefore $R(k, l) \leq R(k', l')$.

E2. (a) Show that the Ramsey number $R(3, 3)$ is 6.

(b) Let G be a graph with at least $\binom{k+l-2}{k-1}$ vertices. Show that there is a clique of size k or an independent set of size l .

Solution:

(a) For 5 vertices we can construct a graph that neither have a clique of size 3 nor an independent set of size 3, for example a pentagon. To prove that every graph G with 6 vertices has a clique of size 3 or an independent set of size 3 we do the following: Color all edges of G blue and complete the graph with red edges. Note that now a clique of red edges corresponds to an independent set in the original graph. Now pick a vertex v . There are 5 edges incident to v . By the pigeonhole principle at least 3 of them must have the same colour. Without loss of generality we consider the 3 edges to be blue (if not we can switch the colors). We assume they connect v to the vertices u, w and r . If any of the edges $(uw), (ur), (rw)$ exists, we found a clique of size 3. If none of these edges exist we found the independent set u, w, r of size 3. In either case this proves the claim.

(b) This is Ramseys theorem. We show the finitenes of the Ramsey numbers. We want to adapt the above idea and proceed by induction on $k + l$. We therefore color the existing edges blue again and complete the graph by adding red edges. For $k = 1$ or $l = 1$ the claim holds: We know that $\binom{k+1-2}{k-1} = \binom{1+l-2}{0} = 1$ and every graph with at least one vertex has a clique and an independent set of size 1. Now let $k, l \geq 2$ and consider a graph with $n = \binom{k+l-2}{k-1}$ vertices. We know by the induction hypothesis that the statement holds for $k, l - 1$ and for $k - 1, l$ in graphs with $n_1 = \binom{k+l-3}{k-1}$ and respectively $n_2 = \binom{k+l-3}{k-2}$ vertices. We know from Pascals triangle that $n = n_1 + n_2$. We again choose a random vertex v . It has n edges incident to it. By the pigeon hole principle we have that either the number of red edges incident to it is $\geq n_1$ or the number of blue edges is $\geq n_2$. If we have at least n_1 red edges incident to it, we use the induction hypothesis for $(k, l - 1)$. By the induction hypothesis we have either a blue clique of size k (in this case we are done) or a red clique of size $l - 1$. In this case we can extend the clique with v and obtain a red clique of size l . For the second case of having at least n_2 blue edges incident to v we proceed analogously. This finishes the proof.

E3. Let $|X| = n$ with $n \geq 2k$. Show that the Erdos-Ko-Rado theorem is sharp, i.e. that there exists an intersecting family \mathcal{F} of k -element subsets of X such that

$$|\mathcal{F}| = \binom{n-1}{k-1}$$

Solution: We do this by constructing such a family. Let us fix one point $a \in X$. We choose the family \mathcal{F} to be all $(k-1)$ -element subsets of $X \setminus \{a\}$ and adjoin a to each of these sets. We then obtain subsets of the size k and since all of our subsets contain a the family is intersecting.

E4. Prove that each tournament has a Hamiltonian path.

Solution: We proceed by induction on the number n of vertices. For $n = 2$ the statement is true. Assume the claim holds for every tournament with $n-1$ vertices. Consider now a tournament T with n vertices. We choose a random vertex v and group the remaining vertices into two sets. We call the vertices with edges going to v tournament T_1 and the vertices with edges coming from v tournament T_2 . Now T_1 and T_2 have at most $n-1$ vertices since v belongs to neither of them. Therefore by the induction hypothesis there exists a Hamiltonian path in T_1 and T_2 . Now take a path in T_1 , continue it to v (possible by our choice of T_1) and continue from v to a path in T_2 . This gives us a path in T .

E5. Prove that in any tournament there exists a vertex v that can be reached from any other vertex by a directed path of length at most 2.

Solution: We proceed by induction on the number n of vertices. For $n = 2$ the statement is true. Assume the claim holds for every tournament with $n-1$ vertices. Consider now a tournament T with n vertices. We delete one vertex u and let v be the vertex from the induction hypothesis for the tournament $T \setminus \{u\}$. If in the tournament T the vertex v can be reached from vertex u in two steps, this proves the claim. If v can not be reached from u in two steps, that means that the edge (v, u) from v to u is in the tournament and also all vertices with an arrow going to v have an arrow going to u . Therefore u can be reached from everywhere within two steps. This proves the claim.

E6. Let K_n denote the complete graph on n vertices. Suppose one colours all the edges of K_n with one of two colours: red or blue.

- (a) Let $v \in V(K_n)$ be a vertex. A bad cherry with vertex v is a set of three vertices $u, v, w \in V(K_n)$ such that the colour of the edge uv is different from the colour of the edge vw . If $r(v)$ denotes the number of edges coming out of vertex v which are painted red, show that the number of bad cherries with vertex v is exactly $r(v)(n-1-r(v))$.
- (b) We say that three vertices $u, v, w \in V(K_n)$ form a monochromatic triangle if the edges uv, uw, vw all have the same colour. Show that, for any colouring of the edges of K_n as above, the number of monochromatic triangles is at least

$$\frac{1}{4} \binom{n}{3} - n^2$$

Solution:

- (a) For creating a bad cherry one would need to pick a red edge coming out of v (for which there are $r(v)$ options) and one blue edge coming out of v (for which there are $n-1-r(v)$ options). Thus, we conclude that the number of bad cherries is exactly $r(v)(n-1-r(v))$.
- (b) We count the number of bad triangles instead. Notice that for each bad triangle there are

2 bad cherries. Thus, the number of bad triangles is

$$\# \text{ bad } \Delta' s = \frac{1}{2} \sum_{v \in V} r(v)(n - 1 - r(v)).$$

The function $x \rightarrow x(n - 1 - x)$ is maximized in $x = (n - 1)/2$, so

$$\# \text{ bad } \Delta' s \leq \frac{1}{2} \sum_{v \in V} (n - 1)^2 / 4 = n(n - 1)^2 / 8 = \frac{3}{4} \binom{n}{3} + \frac{n(n - 1)}{8} \leq \frac{3}{4} \binom{n}{3} + n^2.$$

As there are $\binom{n}{3}$ possible triangles, we get that the number of monochromatic triangles is at least:

$$\geq \binom{n}{3} - \left(\frac{3}{4} \binom{n}{3} + n^2 \right) = \frac{1}{4} \binom{n}{3} - n^2$$