Exercise Set Solutions #11
“Discrete Mathematics” (2025)

Ezxercise 7 is to be submitted on Moodle before 23:59 on May 12th, 2025

E1. In a kindergarden, there are 12 boys, 3 of whom are 3 years old, 5 are 4 years old and 4 are 5
years old; and 9 girls, 4 of whom are 3 years old, 2 are 4 years old and 3 are 5 years old. We pick
one child, each with equal probability.

(1) What is the probability of picking a girl?
(2) What is the probability of picking a girl, provided that we pick a 3 years-old?
(3) What is the probability of picking a 3 years-old, provided that it is a girl?

Answer the same questions for boys.
Solution:

(a) The probability is 3/7.

(b) The probability is 4/7.

(c) The probability is 4/9.

E2. Let F be a family of 3 -element subsets of a finite set X. Prove that the elements of X can
be colored with 3 colors so that at least |F|3!/3 sets in F have exactly one element of each
color.

Solution: Choose a random 3-coloring of the elements of X so that each element gets one
of the 3 colors independently with probability 1/3, and let C' denote the random variable that
counts the number of sets in F that have exactly one element of each color. We have

C = Z Iy
YeF

where Iy denotes the indicator random variable which is 1 if Y has exactly one element of each
color and 0 otherwise, for Y € F. We have

E[Iy] = P(Iy =1)=3!/3?

because there are 3% colorings of the elements of Y and 3 ! of them assign each color to exactly
one element of Y. By the linearity of expectation, we have

E[C] =E [Z Iy] =Y Elly]=) 3—; = |F|-31/33

YeF YeF YeF

It follows that there is a coloring for which C' > |F]| - 3!/33, that is, at least |F]| - 3!/33 sets in F
have exactly one element of each color.

E3. Compute the expected number of 3-cycles in a random graph on n vertices. Here the probability

space is the set of all possible graphs (of which there are 2(3) of those) and each random graph
is assumed to be equally likely.



Solution: Let G be a random graph. Let the vertices be [n]. Let I;;(G) denote the random
variable which is 1 if {,j} € E(G) and 0 otherwise (both these values appear with a probability
of 0.5 ).

Now we know that for any three vertex set {i,j,k} C [n],4,7, k distinct, they form a cycle if

and only if
1ij(G)Lik(G) ki (G) = 1

It is clear that

1

E (1;;(G)Lin(G) ki (G)) = P (1i(G) [ (G) [1:(G)) = 1) = 3

This can be shown either directly, or through independence of random variables. As a result,
we conclude that the expected number of cycles is

El Y Li(G)n(G)k(G) :%).

{i.5,k}Cn]

E4. Let {vy,...,v,} be unit vectors in R?. Prove that it is possible to choose signs &; € {#1} such
that the vector > ; €;v; has Euclidean norm less than or equal to y/n.

Solution: Let X., .. = > i ¢evill. We choose the weights 1, ..., e, independently and
uniformly at random, and for convenience, we consider the square of the Euclidean norm. By
the linearity of expectation, we obtain that

n 2 n n n n
E |:X521;-~~75n] =E Z E;U; =E <Z E;Vq, Z Eivi>] =K Z 812 ”UlHQ + Z Eié‘j <7JZ', Uj>
i=1 =1 =1 =1 i,j=1,i%#]

n n
=FE|[n+ Z €€ <’UZ',UJ'> =n+E Z €€ (vi,vj)
1,5=1,i#] ,j=1i#]

The expected value of the last sum is zero. Indeed, since ¢; and ¢; are independent, we have

n n n

E Z 67;6]' <2}7;,1)j> = Z E [52] E [8]’] <U7;,7}j> = Z 0- <UZ',’U]'> =0.

i,j=1,i#] i,j=1,i#] i,j=1,i#]

In conclusion, the expected value of the square of the norm is n, so there is at least one choice
of the weights for which the vector has norm at least \/n.

E5. (1) For a graph G = (V, E), we denote the complement of G as G’ = (V, (g)\E) That is
v1,vs is an edge in G’ if and only if {v1,v2} ¢ E. We call a set S C V(G) a clique if for
two s1,82 € S, {s1,s2} € E(G). Then apply Turdn’s theorem on G’ to prove the following
equivalent version.



If G has n vertices but no cliques of size r + 1, then

r—1n?2

|E| < :
r 2

(2) For any given value s,t € Z>1, find a graph G¢ on n = s -t vertices with s-¢- (t —1)/2 edges
such that a(G¢) = s. Check that this is equal to the lower bound on independence number
in Turan’s theorem for each ¢.

Solution:

(1) Observe that S C V is a clique in G if and only if it is an independent set in G’. Hence, if
G is has no cliques of size r + 1, then G’ has no independent sets of size r + 1. Thus, an
independent set in G’ has to be of size r at most. By Turdn’s theorem, we are guaranteed
an independent set of size at least n?/ (2|E (G')| + 1). So we write

r> n’ :>\E]<T_1n—2
- (2(’21)—|E|)+n - r 2

(2) Take the graph G} to be the disjoint union of s complete graphs K;. Then, it has the given
number of vertices. Turdn’s inequality is then

(st)
@)z o s °

On the other hand, it is clear that any subset of size strictly bigger than s will have to
contain at least two points inside one of the copies of K; and hence cannot be independent.
Therefore, we are assured that a (Gy) = s.

The complement of this graph will be a complete multipartite graph. There will be s sets
of t vertices such that each copy of t vertices don’t have any internal edges but any two
vertices in different copies will have an edge in between. You can check that this G} tightly
satisfies the equivalent version above.

E6. Find a(G) when G is one of the following graphs. Compare it with the lower bound given by
Turan’s theorem.

(1) The complete graph K,, = ([n], (@)) That is to say that K, is a graph with n vertices such
that there is an edge between any two vertices.

(2) The complete bipartite graph K, ,, = ([n] U [m], [n] x [m]). That is, the vertices are into two
groups of size n and m and there is an edge between each vertex of one group to another.

(3) A path graph P, = ([n], E) where E = {{i,i + 1}}7-]".
(4) A circular graph C,, = P, + {1,n}.

Solution:

(1) Any two vertices in K, are connected by an edge. Hence, it is impossible to find two
independent vertices. Therefore, o (K,) = 1.

Turan’s theorem would give us




(2) Any two vertices lying on opposite sides of the bipartite graph are connected. Hence, an
independent set should completely be on one side. Maximizing this, we see that o (K, n) =
max{m,n}. Turdn’s theorem gives us now

(n 4+ m)?
K, >
o n’m)_Qnm+n+m

(3) Starting from any edge, we can pick up vertices alternatingly. This gives us «a (FP,) =
n/2] + 1. Using Turdn’s theorem tells us

7’L2 n

Py > -
A 32

(4) Again, we are forced to pick up edges alternatingly. With this, we get o (C),) = [n/2]. On
the other hand, from Turan’s theorem we get

2

n n
C,) > —
o n)_2n+n 3




