
Exercise Set Solutions #11
“Discrete Mathematics” (2025)

Exercise 7 is to be submitted on Moodle before 23:59 on May 12th, 2025

E1. In a kindergarden, there are 12 boys, 3 of whom are 3 years old, 5 are 4 years old and 4 are 5
years old; and 9 girls, 4 of whom are 3 years old, 2 are 4 years old and 3 are 5 years old. We pick
one child, each with equal probability.

(1) What is the probability of picking a girl?

(2) What is the probability of picking a girl, provided that we pick a 3 years-old?

(3) What is the probability of picking a 3 years-old, provided that it is a girl?

Answer the same questions for boys.

Solution:

(a) The probability is 3/7.

(b) The probability is 4/7.

(c) The probability is 4/9.

E2. Let F be a family of 3 -element subsets of a finite set X. Prove that the elements of X can
be colored with 3 colors so that at least |F|3!/33 sets in F have exactly one element of each
color.

Solution: Choose a random 3-coloring of the elements of X so that each element gets one
of the 3 colors independently with probability 1/3, and let C denote the random variable that
counts the number of sets in F that have exactly one element of each color. We have

C =
∑
Y ∈F

IY

where IY denotes the indicator random variable which is 1 if Y has exactly one element of each
color and 0 otherwise, for Y ∈ F . We have

E [IY ] = P (IY = 1) = 3!/33

because there are 33 colorings of the elements of Y and 3 ! of them assign each color to exactly
one element of Y . By the linearity of expectation, we have

E[C] = E

[∑
Y ∈F

IY

]
=

∑
Y ∈F

E [IY ] =
∑
Y ∈F

3!

33
= |F| · 3!/33

It follows that there is a coloring for which C ≥ |F| · 3!/33, that is, at least |F| · 3!/33 sets in F
have exactly one element of each color.

E3. Compute the expected number of 3-cycles in a random graph on n vertices. Here the probability

space is the set of all possible graphs (of which there are 2(
n
2) of those) and each random graph

is assumed to be equally likely.



Solution: Let G be a random graph. Let the vertices be [n]. Let Iij(G) denote the random
variable which is 1 if {i, j} ∈ E(G) and 0 otherwise (both these values appear with a probability
of 0.5 ).

Now we know that for any three vertex set {i, j, k} ⊆ [n], i, j, k distinct, they form a cycle if
and only if

Iij(G)Ijk(G)Iki(G) = 1

It is clear that

E (Iij(G)Ijk(G)Iki(G)) = P (Iij(G)Ijk(G)Iki(G)) = 1) =
1

8
.

This can be shown either directly, or through independence of random variables. As a result,
we conclude that the expected number of cycles is

E

 ∑
{i,j,k}⊆[n]

Iij(G)Ijk(G)Iki(G)

 =

(
n
3

)
8

.

E4. Let {v1, . . . , vn} be unit vectors in Rd. Prove that it is possible to choose signs εi ∈ {±1} such
that the vector

∑n
i=1 εivi has Euclidean norm less than or equal to

√
n.

Solution: Let Xε1,...,εn = ∥
∑n

i=1 εivi∥. We choose the weights ε1, . . . , εn independently and
uniformly at random, and for convenience, we consider the square of the Euclidean norm. By
the linearity of expectation, we obtain that

E
[
X2

ε1,...,εn

]
= E

∥∥∥∥∥
n∑

i=1

εivi

∥∥∥∥∥
2
 = E

[〈
n∑

i=1

εivi,
n∑

i=1

εivi

〉]
= E

 n∑
i=1

ε2i ∥vi∥
2 +

n∑
i,j=1,i ̸=j

εiεj ⟨vi, vj⟩


= E

n+
n∑

i,j=1,i ̸=j

εiεj ⟨vi, vj⟩

 = n+ E

 n∑
i,j=1,i ̸=j

εiεj ⟨vi, vj⟩


The expected value of the last sum is zero. Indeed, since εi and εj are independent, we have

E

 n∑
i,j=1,i ̸=j

εiεj ⟨vi, vj⟩

 =
n∑

i,j=1,i ̸=j

E [εi]E [εj ] ⟨vi, vj⟩ =
n∑

i,j=1,i ̸=j

0 · ⟨vi, vj⟩ = 0.

In conclusion, the expected value of the square of the norm is n, so there is at least one choice
of the weights for which the vector has norm at least

√
n.

E5. (1) For a graph G = (V,E), we denote the complement of G as G′ =
(
V,

(
V
2

)
\E

)
. That is

v1, v2 is an edge in G′ if and only if {v1, v2} /∈ E. We call a set S ⊂ V (G) a clique if for
two s1, s2 ∈ S, {s1, s2} ∈ E(G). Then apply Turán’s theorem on G′ to prove the following
equivalent version.
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If G has n vertices but no cliques of size r + 1, then

|E| ≤ r − 1

r

n2

2
.

(2) For any given value s, t ∈ Z≥1, find a graph Gt on n = s · t vertices with s · t · (t− 1)/2 edges
such that α (Gt) = s. Check that this is equal to the lower bound on independence number
in Turán’s theorem for each t.

Solution:

(1) Observe that S ⊂ V is a clique in G if and only if it is an independent set in G′. Hence, if
G is has no cliques of size r + 1, then G′ has no independent sets of size r + 1. Thus, an
independent set in G′ has to be of size r at most. By Turán’s theorem, we are guaranteed
an independent set of size at least n2/ (2 |E (G′)|+ 1). So we write

r ≥ n2(
2
(
n
2

)
− |E|

)
+ n

⇒ |E| ≤ r − 1

r

n2

2
.

(2) Take the graph Gt to be the disjoint union of s complete graphs Kt. Then, it has the given
number of vertices. Turán’s inequality is then

α (Gt) ≥
(st)2

st(t− 1) + st
= s

On the other hand, it is clear that any subset of size strictly bigger than s will have to
contain at least two points inside one of the copies of Kt and hence cannot be independent.
Therefore, we are assured that α (Gt) = s.

The complement of this graph will be a complete multipartite graph. There will be s sets
of t vertices such that each copy of t vertices don’t have any internal edges but any two
vertices in different copies will have an edge in between. You can check that this G′

t tightly
satisfies the equivalent version above.

E6. Find α(G) when G is one of the following graphs. Compare it with the lower bound given by
Turán’s theorem.

(1) The complete graph Kn =
(
[n],

(
[n]
2

))
. That is to say that Kn is a graph with n vertices such

that there is an edge between any two vertices.

(2) The complete bipartite graph Kn,m = ([n]⊔ [m], [n]× [m]). That is, the vertices are into two
groups of size n and m and there is an edge between each vertex of one group to another.

(3) A path graph Pn = ([n], E) where E = {{i, i+ 1}}n−1
i=1 .

(4) A circular graph Cn = Pn + {1, n}.

Solution:

(1) Any two vertices in Kn are connected by an edge. Hence, it is impossible to find two
independent vertices. Therefore, α (Kn) = 1.

Turán’s theorem would give us

α (Kn) ≥
n2

n(n− 1) + n
= 1
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(2) Any two vertices lying on opposite sides of the bipartite graph are connected. Hence, an
independent set should completely be on one side. Maximizing this, we see that α (Km,n) =
max{m,n}. Turán’s theorem gives us now

α (Kn,m) ≥ (n+m)2

2nm+ n+m
.

(3) Starting from any edge, we can pick up vertices alternatingly. This gives us α (Pn) =
⌊n/2⌋+ 1. Using Turán’s theorem tells us

α (Pn) ≥
n2

2(n− 1) + n
=

n

3− 2
n

(4) Again, we are forced to pick up edges alternatingly. With this, we get α (Cn) = ⌊n/2⌋. On
the other hand, from Turán’s theorem we get

α (Cn) ≥
n2

2n+ n
=

n

3
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