

Exercise Set Solutions #11

“Discrete Mathematics” (2025)

Exercise 7 is to be submitted on Moodle before 23:59 on May 12th, 2025

E1. In a kindergarten, there are 12 boys, 3 of whom are 3 years old, 5 are 4 years old and 4 are 5 years old; and 9 girls, 4 of whom are 3 years old, 2 are 4 years old and 3 are 5 years old. We pick one child, each with equal probability.

- (1) What is the probability of picking a girl?
- (2) What is the probability of picking a girl, provided that we pick a 3 years-old?
- (3) What is the probability of picking a 3 years-old, provided that it is a girl?

Answer the same questions for boys.

Solution:

- (a) The probability is 3/7.
- (b) The probability is 4/7.
- (c) The probability is 4/9.

E2. Let \mathcal{F} be a family of 3 -element subsets of a finite set X . Prove that the elements of X can be colored with 3 colors so that at least $|\mathcal{F}|3!/3^3$ sets in \mathcal{F} have exactly one element of each color.

Solution: Choose a random 3-coloring of the elements of X so that each element gets one of the 3 colors independently with probability 1/3, and let C denote the random variable that counts the number of sets in \mathcal{F} that have exactly one element of each color. We have

$$C = \sum_{Y \in \mathcal{F}} I_Y$$

where I_Y denotes the indicator random variable which is 1 if Y has exactly one element of each color and 0 otherwise, for $Y \in \mathcal{F}$. We have

$$\mathbb{E}[I_Y] = P(I_Y = 1) = 3!/3^3$$

because there are 3^3 colorings of the elements of Y and $3!$ of them assign each color to exactly one element of Y . By the linearity of expectation, we have

$$\mathbb{E}[C] = \mathbb{E} \left[\sum_{Y \in \mathcal{F}} I_Y \right] = \sum_{Y \in \mathcal{F}} \mathbb{E}[I_Y] = \sum_{Y \in \mathcal{F}} \frac{3!}{3^3} = |\mathcal{F}| \cdot 3!/3^3$$

It follows that there is a coloring for which $C \geq |\mathcal{F}| \cdot 3!/3^3$, that is, at least $|\mathcal{F}| \cdot 3!/3^3$ sets in \mathcal{F} have exactly one element of each color.

E3. Compute the expected number of 3-cycles in a random graph on n vertices. Here the probability space is the set of all possible graphs (of which there are $2^{\binom{n}{2}}$ of those) and each random graph is assumed to be equally likely.

Solution: Let G be a random graph. Let the vertices be $[n]$. Let $I_{ij}(G)$ denote the random variable which is 1 if $\{i, j\} \in E(G)$ and 0 otherwise (both these values appear with a probability of 0.5).

Now we know that for any three vertex set $\{i, j, k\} \subseteq [n]$, i, j, k distinct, they form a cycle if and only if

$$I_{ij}(G)I_{jk}(G)I_{ki}(G) = 1$$

It is clear that

$$\mathbb{E}(I_{ij}(G)I_{jk}(G)I_{ki}(G)) = P(I_{ij}(G)I_{jk}(G)I_{ki}(G) = 1) = \frac{1}{8}.$$

This can be shown either directly, or through independence of random variables. As a result, we conclude that the expected number of cycles is

$$\mathbb{E}\left(\sum_{\{i,j,k\} \subseteq [n]} I_{ij}(G)I_{jk}(G)I_{ki}(G)\right) = \frac{\binom{n}{3}}{8}.$$

E4. Let $\{v_1, \dots, v_n\}$ be unit vectors in \mathbb{R}^d . Prove that it is possible to choose signs $\varepsilon_i \in \{\pm 1\}$ such that the vector $\sum_{i=1}^n \varepsilon_i v_i$ has Euclidean norm less than or equal to \sqrt{n} .

Solution: Let $X_{\varepsilon_1, \dots, \varepsilon_n} = \|\sum_{i=1}^n \varepsilon_i v_i\|$. We choose the weights $\varepsilon_1, \dots, \varepsilon_n$ independently and uniformly at random, and for convenience, we consider the square of the Euclidean norm. By the linearity of expectation, we obtain that

$$\begin{aligned} \mathbb{E}[X_{\varepsilon_1, \dots, \varepsilon_n}^2] &= \mathbb{E}\left[\left\|\sum_{i=1}^n \varepsilon_i v_i\right\|^2\right] = \mathbb{E}\left[\left\langle \sum_{i=1}^n \varepsilon_i v_i, \sum_{i=1}^n \varepsilon_i v_i \right\rangle\right] = \mathbb{E}\left[\sum_{i=1}^n \varepsilon_i^2 \|v_i\|^2 + \sum_{i,j=1, i \neq j}^n \varepsilon_i \varepsilon_j \langle v_i, v_j \rangle\right] \\ &= \mathbb{E}\left[n + \sum_{i,j=1, i \neq j}^n \varepsilon_i \varepsilon_j \langle v_i, v_j \rangle\right] = n + \mathbb{E}\left[\sum_{i,j=1, i \neq j}^n \varepsilon_i \varepsilon_j \langle v_i, v_j \rangle\right] \end{aligned}$$

The expected value of the last sum is zero. Indeed, since ε_i and ε_j are independent, we have

$$\mathbb{E}\left[\sum_{i,j=1, i \neq j}^n \varepsilon_i \varepsilon_j \langle v_i, v_j \rangle\right] = \sum_{i,j=1, i \neq j}^n \mathbb{E}[\varepsilon_i] \mathbb{E}[\varepsilon_j] \langle v_i, v_j \rangle = \sum_{i,j=1, i \neq j}^n 0 \cdot \langle v_i, v_j \rangle = 0.$$

In conclusion, the expected value of the square of the norm is n , so there is at least one choice of the weights for which the vector has norm at least \sqrt{n} .

E5. (1) For a graph $G = (V, E)$, we denote the complement of G as $G' = (V, \binom{V}{2} \setminus E)$. That is v_1, v_2 is an edge in G' if and only if $\{v_1, v_2\} \notin E$. We call a set $S \subset V(G)$ a clique if for two $s_1, s_2 \in S$, $\{s_1, s_2\} \in E(G)$. Then apply Turán's theorem on G' to prove the following equivalent version.

If G has n vertices but no cliques of size $r + 1$, then

$$|E| \leq \frac{r-1}{r} \frac{n^2}{2}.$$

(2) For any given value $s, t \in \mathbb{Z}_{\geq 1}$, find a graph G_t on $n = s \cdot t$ vertices with $s \cdot t \cdot (t-1)/2$ edges such that $\alpha(G_t) = s$. Check that this is equal to the lower bound on independence number in Turán's theorem for each t .

Solution:

(1) Observe that $S \subset V$ is a clique in G if and only if it is an independent set in G' . Hence, if G has no cliques of size $r + 1$, then G' has no independent sets of size $r + 1$. Thus, an independent set in G' has to be of size r at most. By Turán's theorem, we are guaranteed an independent set of size at least $n^2 / (2|E(G')| + 1)$. So we write

$$r \geq \frac{n^2}{(2\binom{n}{2} - |E|) + n} \Rightarrow |E| \leq \frac{r-1}{r} \frac{n^2}{2}.$$

(2) Take the graph G_t to be the disjoint union of s complete graphs K_t . Then, it has the given number of vertices. Turán's inequality is then

$$\alpha(G_t) \geq \frac{(st)^2}{st(t-1) + st} = s$$

On the other hand, it is clear that any subset of size strictly bigger than s will have to contain at least two points inside one of the copies of K_t and hence cannot be independent. Therefore, we are assured that $\alpha(G_t) = s$.

The complement of this graph will be a complete multipartite graph. There will be s sets of t vertices such that each copy of t vertices don't have any internal edges but any two vertices in different copies will have an edge in between. You can check that this G'_t tightly satisfies the equivalent version above.

E6. Find $\alpha(G)$ when G is one of the following graphs. Compare it with the lower bound given by Turán's theorem.

- (1) The complete graph $K_n = \left([n], \binom{[n]}{2}\right)$. That is to say that K_n is a graph with n vertices such that there is an edge between any two vertices.
- (2) The complete bipartite graph $K_{n,m} = ([n] \sqcup [m], [n] \times [m])$. That is, the vertices are into two groups of size n and m and there is an edge between each vertex of one group to another.
- (3) A path graph $P_n = ([n], E)$ where $E = \{\{i, i+1\}\}_{i=1}^{n-1}$.
- (4) A circular graph $C_n = P_n + \{1, n\}$.

Solution:

(1) Any two vertices in K_n are connected by an edge. Hence, it is impossible to find two independent vertices. Therefore, $\alpha(K_n) = 1$.

Turán's theorem would give us

$$\alpha(K_n) \geq \frac{n^2}{n(n-1) + n} = 1$$

(2) Any two vertices lying on opposite sides of the bipartite graph are connected. Hence, an independent set should completely be on one side. Maximizing this, we see that $\alpha(K_{m,n}) = \max\{m, n\}$. Turán's theorem gives us now

$$\alpha(K_{n,m}) \geq \frac{(n+m)^2}{2nm + n + m}.$$

(3) Starting from any edge, we can pick up vertices alternatingly. This gives us $\alpha(P_n) = \lfloor n/2 \rfloor + 1$. Using Turán's theorem tells us

$$\alpha(P_n) \geq \frac{n^2}{2(n-1) + n} = \frac{n}{3 - \frac{2}{n}}$$

(4) Again, we are forced to pick up edges alternatingly. With this, we get $\alpha(C_n) = \lfloor n/2 \rfloor$. On the other hand, from Turán's theorem we get

$$\alpha(C_n) \geq \frac{n^2}{2n + n} = \frac{n}{3}$$