
Exercise Set Solutions #10
“Discrete Mathematics” (2025)

Note: Spanning trees exist only for connected graphs. All graphs in this exercise set are to be
assumed as connected.

E1. Let G be a graph and L(G) be the Laplace matrix. If L0(G) is the matrix obtained by removing
the last row and column of L(G), show that

detL0(G) =
1

n
λ1λ2 . . . λn−1

where λ1, λ2, . . . , λn−1 are the eigenvalues of L(G) with multiplicities (could be possibly zero).
Hint: det (L(G)− xIn) = −x (λ1 − x) (λ2 − x) . . . (λn−1 − x).

Solution: In L(G), the sum of all the rows and columns is 0 . Adding all the columns to the
last one, and then all the rows to the last one, we get∣∣∣∣∣∣∣∣∣

L1n

L0 − xIn−1 L2n
...

L1n L2n · · · Lnn − x

∣∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣

−x
L0 − xIn−1 −x

...

L1n L2n · · · −x

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣

−x
L0 − xIn−1 −x

...

−x −x · · · −nx

∣∣∣∣∣∣∣∣∣ = −x

∣∣∣∣∣∣∣∣∣
−x

L0 − xIn−1 −x
...

1 1 · · · n

∣∣∣∣∣∣∣∣∣
Now to get the coefficient of −x in det (L(G)− xIn), we have to look at the constant term in
the following determinant, ∣∣∣∣∣∣∣∣∣

−x
L0 − xIn−1 −x

...

1 1 · · · n

∣∣∣∣∣∣∣∣∣ .
To get that, we put x = 0 in the expression, and get that n det (L0) = λ1λ2 . . . λn−1.

E2. Find the number of spanning trees of the following graphs.

(1) The complete graph Kn =
(
[n],

(
[n]
2

))
. That is to say that Kn is a graph with n vertices such

that there is an edge between any two vertices.

(2) The complete bipartite graph Kn,m = ([n]⊔ [m], [n]× [m]). That is, the vertices are into two
groups of size n and m and there is an edge between each vertex of one group to another.

(3) A path graph Pn = ([n], E) where E = {{i, i+ 1}}n−1
i=1 .

(4) A circular graph Cn = Pn + {1, n}.



Solution: (1) This is actually just the number of trees on n vertices. It is equal to nn−2 by
Cayley’s formula. But we can also prove this by finding the value of the determinant of the
following (n− 1)× (n− 1) matrix and dividing by n.

n− 1 −1 · · · −1
−1 n− 1 · · · −1
...

...
. . .

...
−1 −1 · · · n− 1


(2) We can actually find out the eigenvalues of the Laplace matrix directly. The Laplace matrix
L(G) is the following (n+m)× (n+m) matrix.

−1 . . . −1

mIn
...

. . .
...

−1 . . . −1

−1 . . . −1
...

. . .
... nIm

−1 . . . −1


Any column vector with 0 in the bottom m entries and such that the sum of all entries is 0 ,
is an eigenvector of L(G) with eigenvalue m. Similarly, if the top n entries are 0 and the total
sum is 0 , it is an eigenvector with eigenvalue n. Hence, the eigenspace of eigenvalue m is of
dimension n− 1 and eigenspace of n has dimension m− 1.

Finally one last eigenvector one can make is by taking m in the top n entries and −n in the last
m entries. This corresponds to an eigenvalue (m+ n). Multiplying them together and dividing
by m+ n gives

1

m+ n

[
(m+ n)mn−1nm−1

]
= mn−1nm−1

(3) No need to use the Kirchhoff’s theorem here! The graph itself is already a tree. It has
exactly 1 spanning subtree.
(4) Deleting and edge from the circular graph gives us a tree and any subtree must be of this
form. Hence, there are n possible spanning trees.

E3. Suppose G1 and G2 are graphs with exactly 1 vertex in common. That is V (G1)∩ V (G2) = {v}
for some v. If T (G) denotes the number of spanning trees of a graph G, then show that

T (G1 ∪G2) = T (G1)T (G2)

Here V (G1 ∪G2) = V (G1) ∪ V (G2) and E (G1 ∪G2) = E (G1) ∪E (G2). Now find T (G) where
G is the following graph
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Solution: Let S(G) be the set of spanning trees of a graph G. Then we want to show the
following bijection.

S (G1)× S (G2) → S (G1 ∪G2)

(T1, T2) 7→ T1 ∪ T2

Indeed, the assignment is bijective since T1 and T2 can be uniquely recovered from a spanning
tree of G1 ∪G2. Hence the map is both surjective and injective.

For the second part, we observe that G can be written as a union of K3,3, two copies of a
diamond shaped graph D and K4. In the class, we saw that T (D) = 8. From the previous
question, we know that T (K3,3) = 3232 = 81 and T (K4) = 42 = 16. So the answer is T (G) =
81× 8× 8× 16 = 82944

E4. Prove the following lemma: Suppose S ⊆ [m]. Then,

(1) For σ ∈ Perm([m]) such that [m]\S ⊆ [m]σ, we have that σ|S ∈ Perm(S). Here σ|S : S → [m]
is the restriction of σ to S and [m]σ denotes the set of fixed points under the permutation σ.

(2) For σ as above, we get sgn (σ|S) = sgn(σ).

(3) The mapping σ 7→ σ|S is a bijection between

{σ ∈ Perm([m]) | [m]\S ⊆ [m]σ} ↔ Perm(S).

Solution: (1) If everything outside S is fixed by σ : [m] → [m], it is clear that σ|S will take
values only in S. Indeed, if x ∈ [m]\S is such that σ(y) = x, then y = x and hence y ∈ [m]\S.
Now σ|S : S → S is an injective function, and S is a finite set so it must be a bijection.
(2) Since, σ|S is a permutation of S, we can find sgn (σ|S) by finding whether or not it can
be composed using an odd number of transpositions or even. For any decomposition of σ|S =
τ1τ2 . . . τr in terms of transpositions τi ⊆ Perm(S), we can decompose σ = τ̃1τ̃2 . . . τ̃r where
τ̃i ∈ Perm([m]) is the transposition τi lifted to Perm([m]) by just fixing everything in [m]\S.
Hence, if r is odd, both sgn(σ) and σ (σ|S) are -1 , and similarly they are both +1 when r is
even.
(3) The inverse map is to send a permutation τ ∈ Perm(S) to a permutation τ̃ ∈ Perm([m])
which is

τ̃(i) =

{
τ(i) i ∈ S

i i /∈ S

The reader is welcome to check that this is an inverse map and the two sets are in bijection.

E5. Recall from linear algebra the notion of the adjoint matrix. For a matrix A, we define matrix
adj(A) as

adj(A)ji = (−1)i+j detA(i,j)

where A(i,j) is the matrix obtained by A after deletion of i th row and j th column. Now let G
be a graph and L(G) be the Laplace matrix of G

(1) Let v ∈ Cn be the column vector with all 1s. Verify that L(G)v = 0.

(2) What is rank(L(G)) ? What is then the null space of L(G) ?

(3) What is det(L(G)) ? What is the product L(G)× adj(L(G)) ?
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(4) Conclude that
∣∣detL(G)(i,j)

∣∣ is the indepenent of i, j. Use this to further conclude that the
proof of Kirchhoff’s theorem given in the class did not depend on which row was removed
from the incidence matrix.

Solution: (1) This is just saying that the sum of rows of L(G) is zero.
(2) We know that detL0(G) = detL(G)(n,n) is non-zero from Kirchhoff’s theorem since it counts
the number of spanning trees of G. Hence rank (L0(G)) ≥ n − 1. But since we have at least
one non-zero vector in the null-space, namely the vector v, we get rank (L0(G)) = n− 1.

This implies that the null-space is the one-dimensional subspace generated by v. That is
kerL0(G) = Cv.
(3) detL(G) = 0 because it is not a full-rank matrix. We know that L(G) × adj(L(G)) =
det(L(G))In = 0.
(4) Each column of adj L(G) lies in the null-space of L(G). So we conclude that each column of
adjL(G) is equal to Cv for some C ∈ C. Since L(G) is symmetric, adj L(G) is also symmetric
and therefore each entry of adjL(G) is equal to C for some C ∈ C.
If we were to delete the i th row from the incidence matrix M(G,O) and call that matrix
M (i)(G,O), then it can be verified that M (i)(G,O)M (i)(G,O)t = L(G)(i,i). The determinant
of this matrix is the same as that of L0(G).

E6. Let T (Kn) be the number of spanning trees of the complete graph Kn, as defined above. Show
that

(n− 1)T (Kn) =

n−1∑
k=1

k(n− k)

(
n− 1

k − 1

)
T (Kk)T (Kn−k) .

Solution: It is possible to do this after substituting T (Kn) = nn−2, but that will be a very
difficult method.

We will count the following set in two ways.

H = {(T, e) | e is an edge in a spanning tree T of Kn}

Since there are n−1 edges in any tree, the cardinality of this set is the LHS. Note that deleting
e from the tree T gives us two spanning trees T1 and T2 on a disjoint set of vertices.

Now choose a vertex v ∈ Kn. Now partition vertex set Kn as [n] = A ⊔ ([n]\A) such that
v ∈ A. Make a spanning trees T1 of vertices in A and another spanning tree T2 of ver-
tices in [n]\A. Let |A| = k and |[n]\A| = (n − k), then there are k(n − k) ways to se-
lect a connecting edge e from T1 to T2. A can be chosen in

(
n−1
k−1

)
ways. So we get that

H equals
⊔

v∈A⊆[n] {(T1 + {v1, v2}+ T2, {v1, v2}) | T1, T2 are spanning trees on A, [n]\A resp.,
v1 ∈ A, v2 ∈ [n]\A}.
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