
Lecture 11: Cauchy-Binet theorem and Kirchho�'s Theorem

May 9, 2022

In this lecture, we discuss connections between linear algebra and graph theory. Using some
interesting results from linear algebra, we will be able to prove the Kirchho�'s theorem about counting
the number of spanning trees of a graph.

1 Cauchy-Binet

Throughout this section, we work with real matrices. However, all the linear algebra in this lecture
also holds true for the complex �eld.

Theorem 1. Sylvester's determinant identity

Let A be an n×m matrix and B be a m× n matrix. Then,

det (In +AB) = det (Im +BA)

Remark 1. On wikipedia, this is called the Weinstein�Aronszajn identity.

If m 6= n, one of the two sides will be a smaller determinant to calculate. This is useful for

computational linear algebra.

Proof. We will �rst do it for n = k, and when at least one of A or B is an invertible matrix. Then,
we will be able to generalize it for the general case.

In this special case, the identity easily follows from

det (In +AB) = det
(
A(In +BA)A−1

)
,

assuming A is invertible, but works vice-versa for the case of B being invertible.
When neither A or B are invertible, we can approximate them via invertible matrices.
Let t ∈ R be an arbitrary parameter and consider the matrix At = tIn +A. Then, it is clear that

detAt is a polynomial in t and can be zero at most at n di�erent values of t. Furthermore, At = A
when t = 0.

When At is invertible, we can write

det (In +AtB) = det (In +BAt) ,

by what we discussed. Both sides are polynomials in t and the equality holds for all but �nitely many
values of t ∈ R. Hence, as polynomials they are equal and therefore are equal at all values of t.
Therefore, equality holds when t = 0 and we are done.

When n 6= m, we can perform a �padding with 0s� to reduce it to the case of n = m. Suppose that
n ≤ m. Then we consider the matrices

B1 =
[

B | 0
]
,

A1 =

A−
0

 ,
where we add m − n columns of 0 to B to make B1 and we add m − n rows of 0 to A to make A1.
Then, observe that

B1A1 = BA.
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On the other hand,

A1B1 =

AB | 0
− −
0 | 0

 .
So if we write

det(Im +A1B1) = det(Im +B1A1),

we can recover our required identity.

Using this identity, we will now prove the Cauchy-Binet theorem. But �rst, we need some notation.

De�nition 1. Suppose M is a matrix of size m1 ×m2. Let S1 ⊆ [m2] and let S2 ⊆ [m2]. Then, we

denote the #S1×#S2 size matrix MS1,S2
to be the matrix formed by taking only those entries Mij of

M such that i ∈ S1 and j ∈ S2. Such a matrix is called the minor at S1 and S2.

Theorem 2. Cauchy-Binet theorem

Let A be an n×m matrix and let B be an m× n matrix. Suppose n ≤ m. Then,

det(AB) =
∑

S∈([m]
n )

det
(
BS,[n]

)
det
(
A[n],S

)
=

∑
S∈([m]

n )

det ((BA)S,S)

Remark 2. Observe that both sides are calculating determinants of n× n matrices.

Proof. First of all, observe that if i, j ∈ S ⊆ [m], then

((BA)S,S)ij =

n∑
k=1

BikAkj = (BS,[n]A[n],S)ij .

Now, let us start with a z ∈ R \ {0} and substitute A 7→ 1
zA in Theorem 1. So we get,

det(In +
1

z
AB) = det(Im +

1

z
BA)

⇒zm−n det(zIn +AB) = det(zIm +BA). (1)

This is an equality of polynomials in z. Therefore, in particular, the coe�cients of zm−n is the
same on both sides. On the left side, the coe�cient of zm−n is simply det(AB). On the right hand
side, we will need to carefully manipulate our expression to chase the coe�cient.

Let us denote the permutation group of a set S by

Perm(S) = {σ : S → S | σ is a bijection},

and for a σ ∈ Perm ([m]), let
[m]σ = {i ∈ [m] | σ(i) = i}.
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Then, from the de�nition of the determinant, we have that the right-hand side is

det(zIm +BA) =
∑

σ∈Perm([m])

sgn(σ)
∏
i∈[m]

(
zδiσ(i) + (BA)iσ(i)

)
=

∑
σ∈Perm([m])

sgn(σ)
∏

i∈[m]\[m]σ

(BA)iσ(i)
∏

i∈[m]σ

(
z + (BA)iσ(i)

)
=

∑
σ∈Perm([m])

sgn(σ)
∏

i∈[m]\[m]σ

(BA)iσ(i)
∑

S1⊆[m]σ

z#S1

∏
i∈[m]σ\S1

(BA)iσ(i)

=
∑

S1⊆[m]

z#S1

∑
σ∈Perm([m])
S1⊆[m]σ

sgn(σ)
∏

i∈[m]\[m]σ

(BA)iσ(i)
∏

i∈[m]σ\S1

(BA)iσ(i)

=
∑

S1⊆[m]

z#S1

∑
σ∈Perm([m])
S1⊆[m]σ

sgn(σ)
∏

i∈[m]\S1

(BA)iσ(i)

=
∑
S⊆[m]

zm−#S
∑

σ∈Perm([m])
[m]\S⊆[m]σ

sgn(σ)
∏
i∈S

(BA)iσ(i)

Now we will need the following lemma.

Lemma 1. Suppose S ⊆ [m]. Then,

1. For σ ∈ Perm ([m]) such that [m] \ S ⊆ [m]σ, we have that σ|S ∈ Perm (S). Here σS : S → [m]
is the restriction of σ to S.

2. For σ as above, we get sgn(σ|S) = sgn(σ).

3. The mapping σ 7→ σ|S is a bijection between

{σ ∈ Perm([m]) | [m] \ S ⊆ [m]σ} ↔ Perm(S).

The proof of this lemma is an exercise. Using this lemma, we conclude that the coe�cient of zm−n

in the right-hand side of Equation 1 is exactly what we need.

Example 1. Let n = 1, B = AT and

A =
[
a1 a2 a3 . . . am

]
.

Then, both sides of the Cauchy-Binet theorem give

m∑
i=1

a2i .

This means that the Cauchy-Binet theorem is a vast generalization of the Pythagoras theorem.

2 Kirchho�'s theorem

Let G be a graph with n vertices and m edges. We recall the notions of L(G), D(G), A(G) and
M(G,O).

Observe that if

v =


1
1
...
1

 ,
then L(G)v = 0. Hence, rank(L(G)) ≤ n− 1.
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Theorem 3. Kirchho�

Let G be a connected graph with n vertices. Then rank (L(G)) = n−1. Furthermore, if λ1, λ2, . . . , λn−1
are the non-zero roots of L(G), then

1

n
λ1λ2 . . . λn = # of spanning trees of G.

Proof. Fix an orientation O on G. Suppose that V (G) = [n].
Let L0(G) = L(G)[n−1],[n−1] and M0(G,O) = M(G,O)[n−1],E(G). Then, check that (see previous

lecture)

L0(G) =M0(G,O)M0(G,O)T .

Also, check that (this is an exercise)

det(L0(G)) =
1

n
λ1λ2λ3 . . . λn−1.

Then, from the Cauchy-Binet theorem, we get that

det(L0(G)) =
∑

S∈(E(G)
n−1 )

det
(
M0(G,O)[n−1],S

)2
.

Hence, on the right-hand side, we will have a sum of all possible subgraphs of size n − 1 of G. To
�nish this proof, will now show that the

det
(
M0(G,O)[n−1],S

)2
=

{
1 if S are the edges forming a spanning tree

0 otherwise

Let us try to observe this for the case of the oriented graph G = ([4], E), where the oriented edges
are

E(G) = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4)}.

Then,

M(G,O) =


1 1 0 0 0
−1 0 1 1 0
0 −1 −1 0 1
0 0 0 −1 −1

 ,
so

M0(G,O) =

 1 1 0 0 0
−1 0 1 1 0
0 −1 −1 0 1

 .
We know that the edge set {(1, 2), (1, 3), (2, 3)} don't make a spanning tree. This is re�ected in

that there is a non-zero vector in the kernel of the matrix. 1 1 0
−1 0 1
0 −1 −1

 1
−1
1

 =

00
0

 .
Indeed, this vector in the kernel can be constructed in general. If S don't form a spanning tree in

the vertices, then it is possible to �nd a cycle among edges R ⊆ S. Choose a cyclic orientation on R
(clockwise, or counter clockwise) and then de�ne the vector v = (ve)e∈S ∈ RS as

ve =


1 e ∈ R and orientation O agrees with orientation on R

−1 e ∈ R and orientation O disagrees with orientation on R

0 e /∈ R
.
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With this vector, we see that for any vertex i ∈ [n− 1], the sum

(M0(G,O)[n−1],S · v)i =
∑
e∈S

M0(G,O)ieve

=

{
+1− 1 if i is in the cycle formed by R

0 if i is not in the cycle formed by R
.

This means that we can always �nd a non-trivial vector in the kernel of M0(G,O)[n−1],S as long as S
contains a cycle and therefore the determinant of this matrix is zero.

On the other hand, we know that S = {(1, 2), (2, 3), (2, 4)} make a spanning tree. The matrix
corresponding to it has an inverse matrix completely made of integer entries. 1 0 0

−1 1 1
0 −1 0

1 0 0
0 0 −1
1 1 1

 =

1 0 0
0 1 0
0 0 1


It is true in general that if a matrix has integer entries and has an inverse that also has integer entries,
then the matrix has a determinant of ±1 (indeed, take the determinant of this equation). Hence, all
we need to show is that M0(G,O)[n−1],S has an inverse made of integer entries whenever S are the
edge-set of a spanning tree.

This can be achieved using the following construction. Let T = ([n], S) denote the tree formed by
the edges in S. We know that in a connected tree, every pair of distinct vertices are connected by a
unique path. Imagine now, that current is �owing down in the tree along paths down to the vertex
n, corresponding to the deleted row, from every other vertex in the tree T . Construct a matrix N ,
whose rows are indexed by S and columns are indexed by [n− 1] and is given by the following

Nej =


0 if the unique path from j to n in T does not pass through e

1 if the unique path from j to n in T passes through e along the orientation O
−1 if the unique path from j to n in T passes through e against the orientation O

Now, for each pair of vertices i, j ∈ [n− 1], we have

(M0(G,O)[n−1],SN)ij =
∑
e∈S

i is a source of e

Nej −
∑
e∈S

i is a target of e

Nej .

The right hand side is now going to be ±1 if and only if i = j. By suitably multiplying the columns
of N by ±1, an integral matrix inverse of of M0(G,O)[n−1],S can be obtained. Hence, we prove the
claim that det(M0(G,O)[n−1],S)2 = 1 and we are done with the proof.
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