

Exercise Set #9

“Discrete Mathematics” (2025)

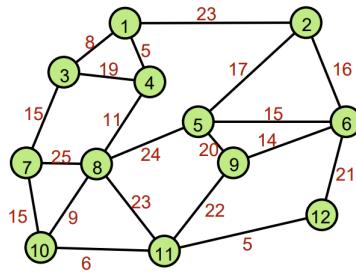
Exercise 7 is to be submitted on Moodle before 23:59 on April 28th, 2025

E1. Characterize the graphs (V, E) for which every connected subgraph (V', E') is equal to the induced subgraph on the respective set of vertices V' .

E2. Let G be a connected weighted graph. Assume it has at least one cycle, and let edge e be an edge that has strictly greater cost than all other edges in that cycle. Show that e does not belong to any minimal weight spanning tree of G .

E3. Prove that any connected graph with distinct weights assigned to the edges has a unique minimal weight spanning tree.

E4. Apply Kruskal’s algorithm to the following graph to obtain a minimal spanning tree:



E5. Let $G = (V, E)$ be a weighted graph with the weight function $f : E \rightarrow \mathbb{R}$, i.e. the weight of an edge E is equal to $f(E)$. What can you say about the output of Kruskal’s algorithm for G (i.e. in terms of uniqueness or for part (3) and (4) how the output relates to the original output) if

- f is a constant function. That is for all $e \in E$, $f(e) = C$ for some fixed $C \in \mathbb{R}$.
- f is an injective function?
- f is replaced by the function $-f$ defined as $e \mapsto -f(e)$?
- f is replaced by a weight function $f' : E \rightarrow \mathbb{R}$ such that for all $e_1, e_2 \in E$, $f(e_1) \leq f(e_2) \Leftrightarrow f'(e_1) \leq f'(e_2)$?

E6. The following is called Prim’s algorithm: Given a weighted graph G

- Initialize a tree with a single vertex, chosen arbitrarily from the graph.
- Grow the tree by one edge: of the edges that connect the tree to vertices not yet in the tree, find the minimum-weight edge, and add it to the tree.
- Repeat step 2 (until all vertices are in the tree).

Prove that the output of Prim’s algorithm is a minimum spanning tree of G . Apply Prim’s algorithm to the graph from Exercise 4.

E7. (Exercise to submit)

Let $G = (V, E)$ be a connected graph with edge weights $w : E \rightarrow \mathbb{Q}^+$, and suppose all edge weights are distinct. Let \mathcal{T} be the set of all spanning trees of G , and let T^* be the *unique* MST. We say that a tree T is a second-best MST if

$$w(T) = \min_{A \in \mathcal{T} \setminus \{T^*\}} w(A)$$

- (a) Let T^* be the MST of G . Prove that there exist edges $e, f \in E$ such that $T^* - e + f$ is a second-best MST.
- (b) Show that the second-best MST is not necessarily unique.
- (c) Consider T' a spanning tree that differs from the MST T^* by two or more edges. Show that T' cannot be a second-best MST.