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Série 11

Exercice 1

On considère le problème 1D de la chaleur non linéaire suivant. Trouver une fonction
u : (x, t) ∈ (0, 1)× R+ 7→ u(x, t) ∈ R telle que

(P)


∂u

∂t
(x, t)− ∂2u

∂x2
(x, t) = u(x, t)3, ∀ x ∈ (0, 1), ∀ t > 0,

u(0, t) = u(1, t) = 0, ∀ t > 0,

u(x, 0) = w(x), ∀ x ∈ (0, 1),

où w(x) est une condition initiale donnée. Pour établir une approximation numérique de
(P), on utilise une méthode de différences finies en espace et en temps. Soit τ > 0
un pas de temps donné; on pose tn = nτ, n = 0, 1, 2, ... . Soit N un entier positif; on note
h = 1

N+1 le pas d’espace et l’on pose xj = jh, j = 0, 1, 2, ..., N + 1. Enfin on note unj une
approximation de u(xj , tn).

1.a) Ecrire le schéma d’approximation du problème (P) en utilisant une méthode d’Euler
rétrograde en temps.

1.b) Dans le cas du schéma issu de la méthode d’Euler rétrograde, on effectue un pas
de la méthode de Newton pour calculer un+1

j , 1 6 j 6 N à partir des valeurs
unj , 1 6 j 6 N . Ecrire explicitement la méthode de Newton.

1.c) Ecrire le schéma d’approximation du problème (P) en utilisant la méthode de Crank-
Nicholson.

Exercice 2

On considère le problème de la chaleur 1D modifié suivant. Trouver une fonction u : (x, t) ∈
[0, 1]× R+ 7→ u(x, t) ∈ R telle que

(P)


∂u

∂t
(x, t)− ∂2u

∂x2
(x, t) + (1 + x)u(x, t) = 0, ∀ x ∈ (0, 1), ∀ t > 0,

u(0, t) = u(1, t) = 0, ∀ t > 0,

u(x, 0) = x(1− x), ∀ x ∈ [0, 1].

Pour établir une approximation numérique de (P), on utilise une méthode de différences
finies en espace et en temps. Soit τ > 0 un pas de temps donné; on pose tn =
nτ, n = 0, 1, 2, ... . Soit N un entier positif; on note h = 1

N+1 le pas d’espace et l’on pose
xj = jh, j = 0, 1, 2, ..., N + 1. Enfin on note unj une approximation de u(xj , tn).



2.a) Ecrire le schéma d’approximation du problème (P) en utilisant une méthode d’Euler
progressive en temps. Pour n fixé, expliciter les valeurs un+1

i , i = 0, . . . , N + 1 en
fonction des uni , i = 0, . . . , N + 1.

2.b) Montrer que si on suppose 1− 2τ
h2
− 2τ > 0, alors uni > 0, i = 0, . . . , N + 1 implique

un+1
i > 0, i = 0, . . . , N + 1.

Exercice 3

Soit f une fonction continue donnée sur l’intervalle [0, 1] × [0,+∞) et α un nombre réel
positif donné. Nous cherchons une fonction u : (x, t) ∈ (0, 1)× [0,+∞)→ u(x, t) ∈ R telle
que

(P)


∂u

∂t
(x, t)− ∂2u

∂x2
(x, t) + αx3u(x, t) = f(x, t), ∀ x ∈ (0, 1), ∀ t > 0,

u(0, t) = u(1, t) = 0, ∀ t > 0,

u(x, 0) = sin(2πx) ∀ x ∈ [0, 1].

Soit N un entier positif, h = 1/(N + 1), notons xi = ih, i = 0, 1, ..., N + 1. Soient τ > 0
un pas de temps donné, tn = nτ avec n = 0, 1, 2, . . ., et uni une approximation de u(xi, tn),
i = 1, ..., N , n = 0, 1, 2, . . ..

3.a) Etablir le schéma d’approximation du problème (P) en utilisant une méthode de
différences finies centrées en espace et un schéma d’Euler progressif en temps.

3.b) Le fichier paraprog.m est à votre disposition sur Noto/Moodle. Le programme
paraprog.m permet de résoudre le problème parabolique en utilisant ce schéma
d’Euler progressif. Compléter le fichier. Pour tester l’algorithme, considérer le cas
particulier où α = 0 et f(x, t) = 0. Vérifier que la solution de (P) est donnée par
u(x, t) = sin(2πx) exp(−4π2t).

3.c) Vérifier numériquement que le schéma est stable si τ 6 h2/2.

Pour ce faire: taper u=paraprog(19,800,0.00125), u=paraprog(19,800,0.0013),...

3.d) On pose α = 1 et f(x, t) = x3e−4π2t sin(2πx). Vérifier que la solution du problème
(P) est donnée par u(x, t) = e−4π2t sin(2πx). Vérifier que la méthode est d’ordre
h2 + τ .

Pour ce faire: taper paraprog(9,160,0.005), paraprog(19,640,0.00125),
paraprog(39,2560,0.0003125), paraprog(79,10240,0.000078125), etc. Notez que
l’erreur est approximativement divisée par quatre à chaque fois que h est divisé par
2 et τ par 4.

3.e) Ecrire le schéma d’approximation du problème (P) en utilisant cette fois-ci une méth-
ode de différences finies centrées en espace et un schéma d’Euler rétrograde en
temps. Soient ~w, ~f(tn) et ~un les N-vecteurs définis par

~w =

 sin(2πx1)
...

sin(2πxN )

 , ~f(tn) =

 f(x1, tn)
...

f(xN , tn)

 , ~un =

un1
...
unN

 .
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Ecrire le schéma sous la forme :

A~un+1 = ~un + τ ~f(tn+1), n = 0, 1, 2, ..., . (1)

Expliciter la matrice A.

3.f) On utilise une méthode de décomposition LLT pour résoudre (1). Le fichier pararetro.m
est à votre disposition sur Noto/Moodle. Le programme pararetro.m permet de ré-
soudre le problème parabolique en utilisant ce schéma d’Euler rétrograde. À
partir de la donnée de f , N , τ et M (le nombre de pas de temps), ce fichier fournit
une approximation de u(x1, tM ), . . ., u(xN , tM ). Compléter le fichier.

3.g) On suppose α = 0 et f(x, t) = 0. Vérifier numériquement que le schéma d’Euler
rétrograde en temps est inconditionnellement stable, ∀τ, h ∈ R?+.
Pour ce faire: taper u=paraprog(19,800,0.00125), u=paraprog(19,800,0.0013),...

3.h) On pose α = 1 et f(x, t) = x3e−4π2t sin(2πx). Vérifier que la méthode est d’ordre
h2 + τ .

Pour ce faire: taper paraprog(9,40,0.02), paraprog(19,160,0.005),
paraprog(39,640,0.00125), paraprog(79,2560,0.0003125), etc. Notez à nouveau
que l’erreur est approximativement divisée par quatre à chaque fois que h est divisé
par 2 et τ par 4.
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