
Analyse numérique

Approximation de problèmes paraboliques. Problème de la chaleur
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Equation de la chaleur 1D

⇢cp
@u
@t

(x , t)� k
@2u
@x2

(x , t) = f (x , t) 0 < x < L, 8t > 0.

u(0, t) = u(L, t) = 0 8t > 0 (conditions aux limites),
u(x , 0) = w(x) 80 < x < L (condition initiale),

Sketch:
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Principe de conservation d’énergie thermique

⇢cp
@u
@t

(x , t)� k
@2u
@x2

(x , t) = f (x , t) 0 < x < L, 8t > 0.

On intégre sur [a, b] ⇢ [0, L]:

Z b

a
⇢cp

@u
@t

(x , t)dx �

Z b

a
k
@2u
@x2

(x , t)dx =

Z b

a
f (x , t)dx

d
dt|{z}

variation au fil du temps

 Z b

a
⇢cpu(x , t)dx

!

| {z }
énergie thermique

�


k
@u
@x

(x , t)
�b

a| {z }
flux de chaleur

=

Z b

a
f (x , t)dx

| {z }
puissance thermique/source
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Problème modèle

Chercher u : (0, 1)⇥ (0,T ) ! R telle que:

@u
@t

(x , t)� k
@2u
@x2

(x , t) = f (x , t) 80 < x < 1, 8t > 0,

u(0, t) = u(1, t) = 0 8t > 0,

u(x , 0) = w(x) 80 < x < 1.
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Solution exacte

Si ⇢cp = 1, f (x , t) = 0 et w(x) = sin(⇡x), alors

u(x , t) = sin(⇡x)e�k⇡2t

Sketch:
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Propriétés

Si f (x , t) = 0, on a

1. Si w(x) � 0 pour tout x 2 (0, 1), alors

u(x , t) � 0, 8x 2 (0, 1), 8t > 0.

2.

max
x2(0,1)

|u(x , t)|  max
x2(0,1)

|w(x)|, 8t > 0.

Sketch:
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Méthode numérique - principe

• Soit N un entier positif, h = 1

N+1
un pas d’espace , xi = i h, i = 0, 1, 2, . . . ,N + 1.

• Soit ⌧ > 0 un pas de temps, tn = n⌧ , n = 0, 1, 2, . . .

• Calculer un
i ' u(xi , tn) avec une "marche en temps".
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Discrétisation en espace: différences finies

Soit N un entier positif, h = 1

N+1
, xi = i h, i = 0, 1, 2, . . . ,N + 1.

@u
@t

(x , t)� k
@2u
@x2

(x , t) = f (x , t)

Chercher ui(t) ' u(xi , t), i = 1, 2, . . . ,N.

d
dt

ui(t) +
k
h2

✓
�ui�1(t)+2ui(t)� ui+1(t)

◆
= f (xi , t) i = 1, . . . ,N, 8t > 0

u0(t) = uN+1(t) = 0 8t > 0,

ui(0) = w(xi) i = 1, . . . ,N.

) Semi-discrétisation en espace
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Semi-discrétisation en espace

Soient

A =
k
h2

2

66664

2 �1

�1
. . .

. . .

. . .
. . . �1

�1 2

3

77775
, ~u(t) =

2

6664

u1(t)
u2(t)

...

uN(t)

3

7775
,~f (t) =

2

6664

f (x1, t)
f (x2, t)

...

f (xN , t)

3

7775
, ~w =

2

6664

w(x1)
w(x2)

...

w(xN)

3

7775

Alors le schéma semi-discrétisé est équivalent à

~̇u(t) = �A~u(t) +~f (t) 8t > 0,

~u(0) = ~w ,

où ~̇u(t) = [du1(t)/dt , du2(t)/dt , . . . , duN(t)/dt ]T .
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Système différentiel

~̇u(t) = �A~u(t) +~f (t) 8t > 0,

~u(0) = ~w ,

• Système différentiel du premier ordre avec une condition initiale

• Schémas d’Euler progressif et rétrograde (par exemple)
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Schéma d’Euler progressif

Soit ⌧ > 0 un pas de temps, tn = n⌧ , n = 0, 1, 2, . . ..

~̇u(t) = �A~u(t) +~f (t) 8t > 0,

~u(0) = ~w ,

Notons ~un
' ~u(tn). Le schéma est:

~un+1
� ~un

⌧
= �A~un +~f (tn), n = 0, 1, 2, . . . ,

~u0 = ~w .
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Schéma discrétisé

~un+1
� ~un

⌧
= �A~un +~f (tn), n = 0, 1, 2, . . . ,

~u0 = ~w .

~un+1 = (I � ⌧A)~un + ⌧~f (tn), n = 0, 1, 2, . . . ,

• Schéma explicite ~un
! ~un+1

• Discrétisation complète par la méthode des différences finies.
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Alternative: discrétisations simultanées

@u
@t

(x , t)� k
@2u
@x2

(x , t) = f (x , t)
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Définition

Un schéma numérique est stable si, lorsque f ⌘ 0:

1. Si un
i � 0, i = 1, . . .N, alors un+1

i � 0, i = 1, . . .N
2.

max
1jN

|un+1

j |  max
1jN

|un
j |
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Résultat de stabilité

Théorème (cas f ⌘ 0)

Si

⌧ 
h2

2k
,

le schéma d’Euler progressif est stable, i.e.

max
1jN

|un
j | ! 0, quand n ! 1

De plus, si un
i � 0, i = 1, . . .N, alors un+1

i � 0, i = 1, . . .N
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Démonstration
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Démonstration (2)
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Démonstration (3)
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Schéma d’Euler rétrograde

Soit ⌧ > 0 un pas de temps, tn = n⌧ , n = 0, 1, 2, . . ..

~̇u(t) = �A~u(t) +~f (t) 8t > 0,

~u(0) = ~w ,

Notons ~un
' ~u(tn). Le schéma est:

~un+1
� ~un

⌧
= �A~un+1 +~f (tn+1), n = 0, 1, 2, . . . ,

~u0 = ~w .
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Schéma discrétisé

Notons ~un
' ~u(tn). Le schéma est:

~un+1
� ~un

⌧
= �A~un+1 +~f (tn+1), n = 0, 1, 2, . . . ,

~u0 = ~w .

(I + ⌧A)~un+1 = ~un + ⌧~f (tn+1), n = 0, 1, 2, . . . .

• Schéma implicite ~un
! ~un+1

• Système linéaire à résoudre, avec (I + ⌧A) symmétrique définie positive
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Résultat de stabilité

Théorème (cas f ⌘ 0)

Le schéma d’Euler rétrograde est inconditionnellement stable, i.e. si ~un, n = 0, 1, 2, . . .,
est la solution de

(I + ⌧A)~un+1 = ~un, n = 0, 1, 2, . . .

alors, pour tout ⌧ > 0:

lim
n!1

k ~un
k= 0.
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Démonstration (sketch)

Comme

~un+1 = (I + ⌧A)�1~un.

Si ||| · ||| est la norme spectrale d’une matrice alors :

k ~un+1
k||| (I + ⌧A)�1

||| · k ~un
k

et, comme (I + ⌧A)�1 est symétrique :

k ~un+1
k � k ~un

k

où � est le maximum des valeurs propres de (I + ⌧A)�1 en valeur absolue. Comme A est

symétrique définie positive, ses valeurs propres �A sont réelles positives. Les valeurs

propres de (I + ⌧A)�1 sont donc (1 + ⌧�A)
�1

2]0, 1[.

k ~un
k �n

k ~u0
k

Alexandre Caboussat Analyse numérique 23 / 32



Remarque

Les schémas d’Euler progressif et rétrograde sont tous les deux d’ordre 1 en temps et

d’ordre 2 en espace. L’erreur commise est donc d’ordre

O(⌧ + h2).
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Schéma de Crank-Nicholson

Les schémas d’Euler sont d’ordre 1 en ⌧ . Pour avoir un schéma d’ordre 2, nous pouvons

utiliser une moyenne des schémas d’Euler progressif et rétrograde:

~un+1
� ~un

⌧
+ A

~un+1 + ~un

2
=

~f (tn+1) +~f (tn)
2

,

ou, de façon équivalente

⇣
I +

⌧

2
A
⌘
~un+1 =

⇣
I �

⌧

2
A
⌘
~un +

⌧

2

⇣
~f (tn+1) +~f (tn)

⌘
.

Le schéma est un schéma numérique d’ordre 2, implicite, inconditionnellement stable.
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Eléments finis
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Eléments finis

@u
@t

(x , t) � k
@2u
@x2

(x , t) = f (x , t)

@u
@t

(x , t)v(x)� k
@2u
@x2

(x , t)v(x) = f (x , t)v(x)
Z

1

0

@u
@t

(x , t)v(x)dx �

Z
1

0

k
@2u
@x2

(x , t)v(x)dx =

Z
1

0

f (x , t)v(x)dx
Z

1

0

@u
@t

(x , t)v(x)dx +

Z
1

0

k
@u
@x

(x , t)v 0(x)dx =

Z
1

0

f (x , t)v(x)dx

si v(0) = v(1) = 0.
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Eléments finis (résumé)

Soit V l’espace des fonctions g : [0, 1] ! R continues, de premières dérivées g0

continues par morceaux et telles que g(0) = g(1) = 0.

Problème semi-discrétisé

Chercher u(·, t) 2 V telle que

Z
1

0

@u
@t

(x , t)v(x)dx +

Z
1

0

k
@u
@x

(x , t)v 0(x)dx =

Z
1

0

f (x , t)v(x)dx , 8v 2 V

) Formulation faible (ou variationnelle)
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Approximation de Galerkin

Soient '1,'2, . . . ,'N N fonctions linéairement indépendantes de V et

Vh = span{'1,'2, . . . ,'N} ⇢ V

Problème de Galerkin

Chercher uh(·, t) 2 Vh telle que

Z
1

0

@uh

@t
(x , t)vh(x)dx +

Z
1

0

k
@uh

@x
(x , t)v 0

h(x)dx =

Z
1

0

f (x , t)vh(x)dx , 8vh 2 Vh

De plus nous exigeons que

uh(x , 0) = wh(x) 8x 2 [0, 1],

où wh est une approximation de w dans Vh.
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1. Poser

uh(x , t) =
NX

i=1

ui(t)'i(x), 8x 2 [0, 1], 8t > 0.

2. Choisir

vh = 'j , j = 1, 2, . . . ,N

NX

i=1

u̇i(t)
1Z

0

'i(x)'j(x)dx +
NX

i=1

ui(t)
1Z

0

k'0
i(x)'

0
j(x)dx

=

1Z

0

f (x , t)'j(x)dx j = 1, . . . ,N.
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Système différentiel

Définitions

• Matrice de rigidité : Aji =

1Z

0

k'0
i(x)'

0
j(x)dx

• Matrice de masse : Mji =

1Z

0

'i(x)'j(x)dx

• ~u(t) = [u1(t), u2(t), . . . , uN(t)]T , ~f (t) tel que fj(t) =
1R

0

f (x , t)'j(x)dx .

Chercher ~u(t) tel que M~̇u(t) + A~u(t) = ~f (t) 8t > 0.
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Schéma d’Euler progressif

M
~un+1

� ~un

⌧
= �A~un +~f (tn)

ou

M~un+1 = (M � ⌧A)~un + ⌧~f (tn),

Résoudre un système pour obtenir ~un+1 car M n’est pas diagonale! Le schéma n’est pas

explicite!

Pour le rendre explicite, on calcule M utilisant la formule de quadrature des trapèzes.

Mji =

1Z

0

'i(x)'j(x)dx ' Lh('i'j) =

⇢
h si i = j ,
0 si i 6= j .

Ce procédé s’appelle mass lumping.
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