Analyse numérique

Approximation de problemes paraboliques. Probléme de la chaleur

Alexandre Caboussat
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Equation de la chaleur 1D

2
pcp?;tl(x, ) — kgxg(x, t) = f(x,t) O<x<lL, Vt>O0.
u(0,t) =u(L, t)=0 vVt > 0 (conditions aux limites),
u(x,0) = w(x) V0 < x < L (condition initiale),

Sketch:
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Principe de conservation d’énergie thermique

2
pcpg’;’(x, t) — kgxg()g t) = f(x,t) O<x<L, Vt>O0.

On intégre sur [a, b] C [0, L]:

b ou
/a/)cpat(xtdx /k 2(xtdx—/fxz‘

gt </b peo(x. t)dx> _ [kg)‘j()(’ t)]b _ /b f(x, t)dx
=~ 2 2 2

J/

variation au fil du temps i i
P! énergie thermique flux de chaleur puissance thermique/source
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Probleme modéle

Chercher u: (0,1) x (0, T) — R telle que:

ou 5%u

E(X’ t)—kﬁ(x, t) =1(x,1) VO<x<1, Vt>0,
u(0,t)y=u(1,t)=0 vt >0,
u(x,0) = w(x) V0 < x < 1.
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Solution exacte

Sipc, =1, f(x,t) =0 et w(x) = sin(mx), alors
p I

u(x, t) = sin(rx)e k=t

Sketch:
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Sif(x,t)=0,0ona

1. Si w(x) > 0 pour tout x € (0,1), alors

u(x,t) >0, Vxe(0,1),Vt>D0.

max |u(x,t)| < max |w(x)|, Vi>O0.
x€(0,1) x€(0,1)

Sketch:
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Méthode numérique - principe

* Soit N un entier positif, h = g1+ un pas d'espace , x; =i h,i=0,1,2,...,N+1.
e Soit 7 > 0 un pas detemps, {,=nr,n=0,1,2,...
e Calculer u ~ u(x;, t) avec une "marche en temps".
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Discrétisation en espace: différences finies

Soit N un entier positif, h= g4, x;=ih,i=0,1,2,... N+1.

ou 0%u
E(Xa t) kﬁ(xa t) f(X7 t)
Chercher u;(t) ~ u(x;, t),i=1,2,...,N.
d k .
i) + g | —uimi(O+2ui(t) — Ui (8) | = F0, ) i=1,...,N, vt>0
Up(t) = un41(t) =0 vt >0,
ui(0) = w(x;) i=1,...,N.

= Semi-discrétisation en espace
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Semi-discrétisation en espace

Soient
2 - us(t) f(x1,1) w(x1)
_ nl . f(xo, t )
A % 1 ot () = U2:( ) - (Xzz ) e w(xz)
1 2 un(t) f(xn; 1) w(Xn)

Alors le schéma semi-discrétisé est équivalent a

—

U(t) = —Ai(t) + f(t)  vt>0,
u(0) = w,

ol U(t) = [dus ()/dt, dus(t)/dk, . .., dun(t)/dt]T.
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Systeme différentiel

U(t) = —Ai(t) + f(t)  vt>0,
U

e Systéme différentiel du premier ordre avec une condition initiale
e Schémas d’Euler progressif et rétrograde (par exemple)
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Schéma d’Euler progressif

Soit 7 > 0 un pas de temps, t, =nr,n=0,1,2,....

—

U(t) = —Ai(t) + f(t)  vt>0,
(0) = w,

Notons 1" ~ u(t,). Le schéma est:
U’n+1 —_gn . .
S = _Al"+1(t), n=012...,
pn

i =w.
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Schéma discrétisé

gl — @i I

T AW+ f(ty), n=01.2...,
-

i =w.

gt = (1— A" + 7f(t)), n=0,1,2,...,

e Schéma explicite 4" — "1
¢ Discrétisation compléete par la méthode des différences finies.
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Alternative: discrétisations simultanées
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Un schéma numérique est stable si, lorsque f = 0:
1. Siu?>0,i=1,...N,alors u"' >0,i=1,...N
2.

max U™ < max |uf|
1<j<N 1<j<N
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Résultat de stabilité

Théoreme (cas f = 0)
Si

le schéma d’Euler progressif est stable, i.e.

max [u]] — 0, quand N — oo

1<j<N

De plus, si uf >0,i=1,...N,alors u™' >0,i=1,...N
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Démonstration
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Démonstration (2)
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Démonstration (3)
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Schéma d’Euler rétrograde

Soit 7 > 0 un pas de temps, t, =nr,n=0,1,2,....

—

U(t) = —Ai(t) + f(t)  vt>0,
(0) = w,

Notons 4" ~ u(t,). Le schéma est:
U’n+1 —_gn ., =
— = AT 4 f(tay1), n=0,1,2,...,
pn

i =w.
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Schéma discrétisé

Notons 4" ~ u(t,). Le schéma est:

ﬁ”+1_ﬁ”
— n=0,1,2,...,

— —AG" + ?(th)a

@ =w.

(I +7A)G™ = 0"+ 7f(tyeq), n=0,1,2,....

e Schéma implicite 4" — 4"t
e Systeme linéaire a résoudre, avec (/ + 7A) symmétrique définie positive
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Résultat de stabilité

Théoreme (cas f = 0)

Le schéma d’Euler rétrograde est inconditionnellement stable, i.e. si ", n=0,1,2,...,
est la solution de

(I+7A)d™" =d", n=0,1,2,...
alors, pour tout 7 > 0:

lim || @ ||= 0.
n—oo
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Démonstration (sketch)

Comme
"t = (1+TA)T"
Si ||| - ||| est la norme spectrale d’'une matrice alors :
g™ < (AT an
et, comme (/ + 7A)~" est symétrique :
g™t <) an

ol 3 est le maximum des valeurs propres de (/ + 7A)~" en valeur absolue. Comme A est
symeétrique définie positive, ses valeurs propres A\ sont réelles positives. Les valeurs
propres de (/ + 7A)~" sont donc (1 +7X4)~" €]0,1].

1" f< s ) @ |
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Remarque

Les schémas d’'Euler progressif et rétrograde sont tous les deux d’ordre 1 en temps et
d’ordre 2 en espace. Lerreur commise est donc d’ordre

O(t + H).

Alexandre Caboussat Analyse numérique 24/32



Schéma de Crank-Nicholson

Les schémas d’'Euler sont d’ordre 1 en 7. Pour avoir un schéma d’ordre 2, nous pouvons
utiliser une moyenne des schémas d’Euler progressif et rétrograde:

gntt — gn +Aa’n+1 +gn _ )_c’(thH) + ?(tn)
T 2 2 ’

ou, de fagon équivalente

(/+ %A) g = (/ . %A) "+ % (f(t,m) + ?(tn)) .

Le schéma est un schéma numérique d’ordre 2, implicite, inconditionnellement stable.
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Eléments finis
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Eléments finis

/8tXt

0
si v(0) =v(1)

Alexandre Caboussat

ou 5%u

E(X’ f) k8 2(X f) = f(x,1)
2
2 x, vl - kg‘;<xt><>: X OV(x)
dx—/ k—x / f(x, tv(x
dx+/k (x, v = /0 f(x, t)v(x)dx

= 0.
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Eléments finis (résumé)

Soit V I'espace des fonctions g : [0, 1] — R continues, de premiéres dérivées g’
continues par morceaux et telles que g(0) = g(1) = 0.

Probléme semi-discrétisé
Chercher u(-, t) € V telle que

T ou 1 du , 1
—(x, t)v(x)dx+/ k—(x, t)v'(x)dx :/ f(x,t)v(x)dx, YveV
0 ot 0 ox 0

= Formulation faible (ou variationnelle)
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Approximation de Galerkin

Soient ¢1, o, ..., N N fonctions linéairement indépendantes de V et
Vh = span{epy, 02,...,on} C V

Probleme de Galerkin
Chercher up(-, t) € V}, telle que

8Uh

T —(x, H)vp(x dx+/ k—xt) x)dx—/ f(x, Hva(x)dx, Vvh e Vy
0

De plus nous exigeons que
Up(x,0) = wy(x)  Vx €[0,1],

ou wy est une approximation de w dans Vj,.
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1. Poser

N
un(x,t) =Y u(t)pi(x),  vx€[0,1], Vt>0.
i=1
2. Choisir
Vh:gpj, j:1,2,...,N
’
/90/ 90/ x)ax + Z u;(t /k‘P: CP/
i=1 0

f(x,ej(x)ax  j=1,....N.

|
o—_
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Systeme différentiel

]
* Matrice de rigidité : A; = /k<p§(x)<p}(x)dx

0
1

¢ Matrice de masse : M = /go,'(X)cpj(X)dX
0

. 1
o T(t) = [ty (1), ua(t), . .., un(B)]T, F(t) tel que fi(t) = Off(x, ) (x)x.

-

Chercher G(t) tel que Mu(t) + Ali(t) = f(t) vVt > 0.
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Schéma d’Euler progressif

L—jn-H o U" . .
= A"+ f(ty)

P
ou

Mt = (M — A" + 7H(t,),

Résoudre un systéme pour obtenir 4"t car M n’est pas diagonale! Le schéma n’est pas
explicite!

Pour le rendre explicite, on calcule M utilisant la formule de quadrature des trapezes.
1

h sii=j,
M;i = /QOI(X)SOj(X)dX ~ Lp(pipj) = { 0 si ,'74',
0

Ce procédé s’appelle mass lumping.
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