Analyse numérique

Eléments finis pour des problémes aux limites unidimensionnels
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Un probleme aux limites unidimensionnel

Soient ¢, f € C%([0, 1]), chercher u € C?(]0, 1]) telle que

) + c(x)u(x) = f(x) sio<x<1,
u(1)=0.

- u'(x
u(0) =

Ce probleme est appelé probleme fort
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Un peu de calcul

1 1 1
—/ u”(x)v(x)dx+/ c(x)u(x)v(x)dx:/ f(x)v(x)dx
0 0 0

/1 u'(x)v(x)'dx —d'(1)v(1) + ' (0)v(0) + /1 c(x)u(x)v(x)dx = /1 f(x)v(x)dx
0 0 0
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Résumé

En multipliant par une fonction v € C'([0, 1]), intégrant sur [0, 1] :

1 1 1
- / 4 (X)V(x)ax + / c(x)u(x)v(x)dx = / F(x)v(x)dx.
0 0 0

En intégrant par parties:

/ WOV (X)dx — (V1) + L (O)W(O) + / (U V(x)dx = / " fov(x)dx.
0 0 0

En imposant v(0) = v(1) =0

1 1 1
/ u’(x)v’(x)dx+/ c(x)u(x)v(x)dx :/ f(x)v(x)dx.
0 0 0
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Espace vectoriel

Définition
Soit V 'ensemble de toutes les fonctions g continues, de premiére dérivée g’ continue
par morceaux et telles que g(0) = g(1) = 0.

V est un espace vectoriel
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Probleme variationnel

Chercher u € V tel que

1 1 1
/ u’(x)v’(x)dx+/ c(x)u(x)v(x)dx :/ f(x)v(x)dx.
0 0 0

pour toute fonction v € V

Ce probleme est appelé probleme faible ou probleme variationnel.
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Remarques

e | es fonctions u € V sont moins réguliéres que la solution du probléme fort.
e La solution du probléme fort est une solution du probleme faible.

e Si c(x) > 0, alors la solution du probleéme faible est unique, et c’est également la
solution du probléme fort.
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Principe d’énergie

1 1
/ (/(x))2dx = / F(x)u(x)dx.
0 0
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Méthode de Galerkin

¢ Point de départ des méthodes d’éléments finis et des méthodes spectrales.
® Basée sur la formulation faible (contrairement aux différences finies) \

Rappel
Chercher u € V tel que

1 1 1
/ (W (x)dx + / c(X)u(x)V(x)ax = / F(x)v(x)dx.
0 0 0

pour toute fonction v € V
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Méthode de Galerkin (2)

e Soient v1, ¢, ..., N, N fonctions linéairement indépendantes de V

® V= span{p1,p2,...,on} €st un sous-espace vectoriel de V:
N
ge Ve & 9g(x) =) giwix)
i=1

ougi €R.

* Approximation du probléme faible: trouver une fonction u, € V}, telle que

1 1 1
/ ug(x)v,’?(x)dx~|—/ c(x)uh(x)vh(x)dx:/ f(x)vn(x)dx
0 0 0
pour toute fonction vy € V.
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Approximation de Galerkin

Probléme variationnel
Chercher u € V tel que

1 1 1
/ u’(x)v’(x)dx+/ c(x)u(x)v(x)dx —/ f(x)v(x)dx, YveV
0 0 0

Probleme de Galerkin
Chercher u, € V}, telle que

1 1 1
/ u;,(x)v,’,(x)dx+/ C(x)uh(x)vh(x)dx:/ f(x)va(x)dx, Yvpe Vj
0 0 0
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Approximation de Galerkin (2)

1 1 1
up € Vp, /0 u;,(x)v,’,(x)der/0 c(x)uh(x)vh(x)dx—/0 f(x)va(x)dx, Vvhe Vy I

Puisque uy, est cherché dans Vj, on peut écrire :

upb eV & up(x) = Z uipi(Xx), (uq, Uz, ..., Uy inconnues)

Soit vy = 4,9/-, 1 <j < N. Chercher uy, u, ..., up tels que

1 1
Zu, ( / X))o + / (X)w(x)w(x)dx>= /O F(X)5(x)x

pour j = 1,2,...,N.
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Approximation de Galerkin (3)

N

1 1 1
D Ui (/0 @?(X)w}(x)der/o C(X)SOi(X)SOj(X)dX>:/O f(X)pj(x)dx, j=1,2,...,N.

i=1

Soit Ala N x N matrice:
1 1
Ay = /O (Xl (x)dx + /0 S(X)i(X) (X,
Sid=[us,Us,...,un]T et fvecteur:

|
ij-—/o f(x)pj(x)dx

Solution d’un systéme linéaire : chercher i tel que
Al =f
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Remarques

e Si c =0, la matrice A est appelée matrice de rigidité
¢ Méthode de Galerkin nécessite la résolution d’'un systéme linéaire

¢ Question ouverte: choix de V}, ?
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Méthode des éléments finis

Choix des fonctions o1, ¢, ..., pn définissant Vj, ?

e | a matrice A est une matrice creuse.

e La solution uy, doit converger vers la solution u lorsque le nombre N — occ.
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Résultat de convergence

Lespace vectoriel V muni de la norme | - |1 définie par

1 1/2
l9l1 = (/0 (Q'(X))zdx> sige V.

est un espace vectoriel normé

Théoréme

Soit ¢(x) > 0, Vx € [0, 1]. Si u est solution du probléme faible et uy, solution du probléeme
de Galerkin, on a
|U— Uh’1 < C min ‘U— Vh’1,
VhE Vh

ou C = 1 + maxyc[o,1] |c(x)| (indépendante de Vj).
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Démonstration (cas: ¢(x) = 0)

Si u est solution du probléme faible et up solution du probléme de Galerkin, on a (par
soustraction):

/1 (U'(x) — up(x)) vh(x)dx =0 Vvu € V.
0

Posons e(x) = u(x) — up(x):

1
/ V(X)X =0, Wy e Vp
0
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ou v, € V.
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Démonstration (2)

1
lelf = /Oe’(X)(U'(X)—Vf';(X))dX, YVh € Vh I

Inégalité de Cauchy-Schwarz :

1/2

1/2
of; < ( / 1(e’(x))zdx) ( / W - va))?dx) ,

lef2 < lels |u— val.

Donc

Simplifier et prendre le minimum sur v € V.
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Alexandre Caboussat

Méthode d’éléments finis de degré 1

Divisons l'intervalle [0,1] en N + 1 parties (N étant un entier positif) et posons
h=1/(N+1),x;=ihaveci=0,1,2,... , N+ 1.
On définit, pour i =1,2,...,N:

X — Xj—A
Xj — Xi—1

si xi_1 < x < X,

X — Xjt1
Xj — Xit1

0

si Xj < X < Xjy1,

Si X < Xj_10UX > Xjiq.
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Méthode d’eéléments finis de degré 1 (2)

® (X)) = 0j, 0<j<N+1

® iy, €stun polyndme de degré un, 1 <j < N+ 1.
=17

pieV

® »1,p2,...,pN SONt linéairement indépendantes

Vih = span{p1, p2,..., N}
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Définitions
Nous dirons ainsi que :
® Xp, X1, X2, ..., Xni1 SONt les nceuds de la discrétisation

® [xo, X1], [X1, X2], . . ., [Xn, Xn1-1] SONt les éléments géométriques

® v1,02,...,0N SONt les fonctions de base du sous-espace V), de type éléments finis
de degré 1 associées aux nceuds intérieurs xq, X2, . .., Xn-
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Sig € V,, alors

N
a(x) = giwi(x),
i=

En particulier,
gx)=9;, 1<j<N
9(0) =g(1)=0
et g est une fonction affine sur chaque élément géométrique.
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Convergence

SiueV, alors

N

Mt =Y u(x)ei

i=1

est l'interpolant de degré 1 par intervalle de la fonction u.

Par construction, rau € Vj, et

min U — Vpl1 < |U— rpuly.
VhEVh

Ainsi:
U— Uplt < C min |u— vplt < Clu— rpuly.
VhEVh
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Résultat

Théoréeme

Soit ¢(x) > 0, Vx € [0, 1]. Si u est solution du probléme faible et uy, solution du probléme
de Galerkin avec V}, engendré par les fonctions de base de type éléments finis de
degré 1, on a I'estimation d’erreur

’U_ Uh|1 < Ch:

ou C est une constante indépendante de N (et donc de h).
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Démonstration

Il faut montrer:
’U— rhU"] < Ch7

ot C est une constante indépendante de N.
Posons w := u — rpu. Comme rpu(x;) = u(x;), 0 <i < N+1, w(x;) =0.

Théoréeme de Rolle : il existe & €]x;, x;.1[ tel que w/(&;) =0,0 < < N.
Ainsi, comme ryu est un polynédme de degré 1 sur chaque [x;, X;+1] on a

X X
W(x) = / W' (s)ds = / U(s)ds. X € [XjXipd]
& &i

Donc :
X1
W (x)| < / ()05, X € [ Xiad]
X

i
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Démonstration (2)

Inégalité de Cauchy-Schwarz: pour x € [x;, Xj1] :

Xi1 1/2 Xit1 1/2
w'(x)| < < / 12ds> ( / \u”(s)|2ds> <
Xj X

1

Donc:

Xit1 Xit1
/ |w'(x)[2dx < h2/
Xi Xi

Sommer sur I'indice i :

U= ot = w3 —/ W (x)[2dkx = 2/

P / 0 (s)2ds.

" 1/2
Conclure avec C = (f u"(s \zds>
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Xit1 1/2
h1/2 </ ’UH(S)|2dS>
Xi

|u”(s)[2ds.

(x)[Pdx < h? Z/ (s)]2ds
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Systeme linéaire éléments finis de degré 1

Calcul des coefficients :

Explicitement

1 2/h  sii=]j,
/0 H)e(x)ax ={ —1/h sili—j| =1,

0 autrement.
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Systeme linéaire €léments finis de degré 1 (2)

Formule d’intégration numérique (e.g. trapézes)

1
/ ((x)0x = Ly(t) = (;am FH0x0) + £0x2) - L0) + (0 )) .
0

Ainsi ;
o
[ et0stnraan = Lateme = { g0 124

1
|| 10061000 = La(ti) = i)
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Remarque

Le systéeme linéaire obtenu avec la méthode des éléments finis est équivalent au systeme
linéaire obtenu avec la méthode des différences finies (a un facteur h).

La méthode des éléments finis est plus flexible.
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