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Un problème aux limites unidimensionnel

Soient c, f 2 C0([0, 1]), chercher u 2 C2([0, 1]) telle que

� u00(x) + c(x)u(x) = f (x) si 0 < x < 1,

u(0) = u(1) = 0.

Ce problème est appelé problème fort

Alexandre Caboussat Analyse numérique 4 / 31



Un peu de calcul

�u00(x) + c(x)u(x) = f (x)

�u00(x)v(x) + c(x)u(x)v(x) = f (x)v(x)

�
Z

1

0

u00(x)v(x)dx +

Z
1

0

c(x)u(x)v(x)dx =

Z
1

0

f (x)v(x)dx

Z
1

0

u0(x)v(x)0dx � u0(1)v(1) + u0(0)v(0) +
Z

1

0

c(x)u(x)v(x)dx =

Z
1

0

f (x)v(x)dx
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Résumé

En multipliant par une fonction v 2 C1([0, 1]), intégrant sur [0, 1] :

�
Z

1

0

u00(x)v(x)dx +

Z
1

0

c(x)u(x)v(x)dx =

Z
1

0

f (x)v(x)dx .

En intégrant par parties:

Z
1

0

u0(x)v 0(x)dx � u0(1)v(1) + u0(0)v(0) +
Z

1

0

c(x)u(x)v(x)dx =

Z
1

0

f (x)v(x)dx .

En imposant v(0) = v(1) = 0 :

Z
1

0

u0(x)v 0(x)dx +

Z
1

0

c(x)u(x)v(x)dx =

Z
1

0

f (x)v(x)dx .
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Espace vectoriel

Définition

Soit V l’ensemble de toutes les fonctions g continues, de première dérivée g0 continue

par morceaux et telles que g(0) = g(1) = 0.

V est un espace vectoriel
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Problème variationnel

Chercher u 2 V tel que

Z
1

0

u0(x)v 0(x)dx +

Z
1

0

c(x)u(x)v(x)dx =

Z
1

0

f (x)v(x)dx .

pour toute fonction v 2 V

Ce problème est appelé problème faible ou problème variationnel.
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Remarques

• Les fonctions u 2 V sont moins régulières que la solution du problème fort.

• La solution du problème fort est une solution du problème faible.

• Si c(x) � 0, alors la solution du problème faible est unique, et c’est également la

solution du problème fort.
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Principe d’énergie

v = u, c ⌘ 0

Z
1

0

(u0(x))2dx =

Z
1

0

f (x)u(x)dx .
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Méthode de Galerkin

• Point de départ des méthodes d’éléments finis et des méthodes spectrales.

• Basée sur la formulation faible (contrairement aux différences finies)

Rappel

Chercher u 2 V tel que

Z
1

0

u0(x)v 0(x)dx +

Z
1

0

c(x)u(x)v(x)dx =

Z
1

0

f (x)v(x)dx .

pour toute fonction v 2 V
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Méthode de Galerkin (2)

• Soient '1,'2, . . . ,'N , N fonctions linéairement indépendantes de V

• Vh = span{'1,'2, . . . ,'N} est un sous-espace vectoriel de V :

g 2 Vh , g(x) =
NX

i=1

gi'i(x)

où gi 2 R.

• Approximation du problème faible: trouver une fonction uh 2 Vh telle que

Z
1

0

u0
h(x)v

0
h(x)dx +

Z
1

0

c(x)uh(x)vh(x)dx =

Z
1

0

f (x)vh(x)dx

pour toute fonction vh 2 Vh.
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Approximation de Galerkin

Problème variationnel

Chercher u 2 V tel que

Z
1

0

u0(x)v 0(x)dx +

Z
1

0

c(x)u(x)v(x)dx =

Z
1

0

f (x)v(x)dx , 8v 2 V

Problème de Galerkin

Chercher uh 2 Vh telle que

Z
1

0

u0
h(x)v

0
h(x)dx +

Z
1

0

c(x)uh(x)vh(x)dx =

Z
1

0

f (x)vh(x)dx , 8vh 2 Vh
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Approximation de Galerkin (2)

uh 2 Vh,

Z
1

0

u0
h(x)v

0
h(x)dx +

Z
1

0

c(x)uh(x)vh(x)dx =

Z
1

0

f (x)vh(x)dx , 8vh 2 Vh

Puisque uh est cherché dans Vh, on peut écrire :

uh 2 Vh , uh(x) =
NX

i=1

ui'i(x), (u1, u2, . . . , uN inconnues)

Soit vh = 'j , 1  j  N. Chercher u1, u2, . . . , uN tels que

NX

i=1

ui

 Z
1

0

'0
i(x)'

0
j(x)dx +

Z
1

0

c(x)'i(x)'j(x)dx

!
=

Z
1

0

f (x)'j(x)dx

pour j = 1, 2, . . . ,N.
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Approximation de Galerkin (3)

NX

i=1

ui

 Z
1

0

'0
i(x)'

0
j(x)dx +

Z
1

0

c(x)'i(x)'j(x)dx

!
=

Z
1

0

f (x)'j(x)dx , j = 1, 2, . . . ,N.

Soit A la N ⇥ N matrice:

Aji =

Z
1

0

'0
i(x)'

0
j(x)dx +

Z
1

0

c(x)'i(x)'j(x)dx ,

Si ~u = [u1, u2, . . . , uN ]
T et ~f vecteur:

fj =
Z

1

0

f (x)'j(x)dx

Solution d’un système linéaire : chercher ~u tel que

A~u = ~f
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Remarques

• Si c = 0, la matrice A est appelée matrice de rigidité

• Méthode de Galerkin nécessite la résolution d’un système linéaire

• Question ouverte: choix de Vh ?
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Méthode des éléments finis

Choix des fonctions '1, '2, . . ., 'N définissant Vh ?

• La matrice A est une matrice creuse.

• La solution uh doit converger vers la solution u lorsque le nombre N ! 1.
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Résultat de convergence

L’espace vectoriel V muni de la norme | · |1 définie par

|g|1 =

 Z
1

0

(g0(x))2dx

!1/2

si g 2 V .

est un espace vectoriel normé

Théorème

Soit c(x) � 0, 8x 2 [0, 1]. Si u est solution du problème faible et uh solution du problème

de Galerkin, on a

|u � uh|1  C min
vh2Vh

|u � vh|1,

où C = 1 +maxx2[0,1] |c(x)| (indépendante de Vh).
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Démonstration (cas: c(x) = 0)

Si u est solution du problème faible et uh solution du problème de Galerkin, on a (par

soustraction): Z
1

0

�
u0(x)� u0

h(x)
�

v 0
h(x)dx = 0 8vh 2 Vh.

Posons e(x) = u(x)� uh(x):
Z

1

0

e0(x)v 0
h(x)dx = 0, 8vh 2 Vh.

Donc

|e|2
1

=

Z
1

0

�
e0(x)

�2 dx =

Z
1

0

e0(x)(u0(x)� u0
h(x))dx =

Z
1

0

e0(x)u0(x)dx

=

Z
1

0

e0(x)(u0(x)� v 0
h(x))dx ,

où vh 2 Vh.
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Démonstration (2)

|e|2
1

=

Z
1

0

e0(x)(u0(x)� v 0
h(x))dx , 8vh 2 Vh

Inégalité de Cauchy-Schwarz :

|e|2
1

 Z

1

0

(e0(x))2dx

!1/2 Z
1

0

(u0(x)� v 0
h(x))

2dx

!1/2

,

Donc

|e|2
1
 |e|1 |u � vh|1.

Simplifier et prendre le minimum sur vh 2 Vh.
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Méthode d’éléments finis de degré 1

Divisons l’intervalle [0, 1] en N + 1 parties (N étant un entier positif) et posons

h = 1/(N + 1), xi = ih avec i = 0, 1, 2, . . . ,N + 1.

On définit, pour i = 1, 2, . . . ,N :

'i(x) =

8
>>>>>><

>>>>>>:

x � xi�1

xi � xi�1

si xi�1  x  xi ,

x � xi+1

xi � xi+1

si xi  x  xi+1,

0 si x  xi�1 ou x � xi+1.
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Méthode d’éléments finis de degré 1 (2)

• 'i(xj) = �ij , 0  j  N + 1

• 'i|[xj�1,xj ]
est un polynôme de degré un, 1  j  N + 1.

• 'i 2 V

• '1,'2, . . . ,'N sont linéairement indépendantes

• Vh = span{'1,'2, . . . ,'N}
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Définitions

Nous dirons ainsi que :

• x0, x1, x2, . . . , xN+1 sont les nœuds de la discrétisation

• [x0, x1], [x1, x2], . . . , [xN , xN+1] sont les éléments géométriques

• '1,'2, . . . ,'N sont les fonctions de base du sous-espace Vh de type éléments finis

de degré 1 associées aux nœuds intérieurs x1, x2, . . . , xN .
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Propriété

Si g 2 Vh, alors

g(x) =
NX

i=1

gi'i(x),

En particulier,

g(xj) = gj , 1  j  N

g(0) = g(1) = 0

et g est une fonction affine sur chaque élément géométrique.
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Convergence

Rappel

Si u 2 V , alors

rhu =
NX

i=1

u(xi)'i

est l’interpolant de degré 1 par intervalle de la fonction u.

Par construction, rhu 2 Vh et

min
vh2Vh

|u � vh|1  |u � rhu|1.

Ainsi:

|u � uh|1  C min
vh2Vh

|u � vh|1  C|u � rhu|1.
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Résultat

Théorème

Soit c(x) � 0, 8x 2 [0, 1]. Si u est solution du problème faible et uh solution du problème

de Galerkin avec Vh engendré par les fonctions de base de type éléments finis de

degré 1, on a l’estimation d’erreur

|u � uh|1  Ch,

où C est une constante indépendante de N (et donc de h).
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Démonstration

Il faut montrer:

|u � rhu|1  C̃h,

où C̃ est une constante indépendante de N.

Posons w := u � rhu. Comme rhu(xi) = u(xi), 0  i  N + 1, w(xi) = 0.

Théorème de Rolle : il existe ⇠i 2]xi , xi+1[ tel que w 0(⇠i) = 0, 0  i  N.

Ainsi, comme rhu est un polynôme de degré 1 sur chaque [xi , xi+1] on a

w 0(x) =
Z x

⇠i

w 00(s)ds =

Z x

⇠i

u00(s)ds, x 2 [xi , xi+1]

Donc :

|w 0(x)| 
Z xi+1

xi

|u00(s)|ds, x 2 [xi , xi+1]
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Démonstration (2)

Inégalité de Cauchy-Schwarz: pour x 2 [xi , xi+1] :

|w 0(x)| 
✓Z xi+1

xi

1
2ds
◆1/2✓Z xi+1

xi

|u00(s)|2ds
◆1/2

 h1/2

✓Z xi+1

xi

|u00(s)|2ds
◆1/2

Donc: Z xi+1

xi

|w 0(x)|2dx  h2

Z xi+1

xi

|u00(s)|2ds.

Sommer sur l’indice i :

|u � rhu|21 = |w |21 =

Z
1

0

|w 0(x)|2dx =
NX

i=0

Z xi+1

xi

|w 0(x)|2dx  h2

NX

i=0

Z xi+1

xi

|u00(s)|2ds

= h2

Z
1

0

|u00(s)|2ds.

Conclure avec C̃ =
⇣R

1

0
|u00(s)|2ds

⌘1/2
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Système linéaire éléments finis de degré 1

Calcul des coefficients :

Aji =

Z
1

0

'0
i(x)'

0
j(x)dx +

Z
1

0

c(x)'i(x)'j(x)dx , 1  i , j  N

fj =
Z

1

0

f (x)'j(x)dx 1  j  N.

Explicitement

Z
1

0

'0
i(x)'

0
j(x)dx =

8
<

:

2/h si i = j ,
�1/h si |i � j | = 1,
0 autrement.
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Système linéaire éléments finis de degré 1 (2)

Formule d’intégration numérique (e.g. trapèzes)

Z
1

0

`(x)dx ' Lh(`) = h
✓

1

2
`(x0) + `(x1) + `(x2) + · · ·+ `(xN) +

1

2
`(xN+1)

◆
.

Ainsi Z
1

0

c(x)'i(x)'j(x)dx ' Lh(c'i'j) =

⇢
hc(xj) si i = j ,
0 si i 6= j ,

Z
1

0

f (x)'j(x)dx ' Lh(f'j) = hf (xj).
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Remarque

Le système linéaire obtenu avec la méthode des éléments finis est équivalent au système

linéaire obtenu avec la méthode des différences finies (à un facteur h).

La méthode des éléments finis est plus flexible.
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