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Equation de transport 1D

Soient:

• c : (x , t) 2 R⇥ R+
! c(x , t) 2 R

• f : (x , t) 2 R⇥ R+
! f (x , t) 2 R

• w : x 2 R ! w(x) 2 R

Chercher u : (x , t) 2 R⇥ R+
! u(x , t) 2 R telle que :

@u

@t
(x , t) + c(x , t)

@u

@x
(x , t) = f (x , t) 8x 2 R, 8t > 0,

avec la condition initiale

u(x , 0) = w(x) 8x 2 R.
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Cas particulier

Chercher u : (x , t) 2 R⇥ R+
! u(x , t) 2 R telle que :

@u

@t
(x , t) + c0

@u

@x
(x , t) = 0 8x 2 R, 8t > 0,

avec la condition initiale

u(x , 0) = w(x) 8x 2 R.
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Solution exacte

(c(x , t) = c0, f = 0)

u(x , t) = w(x � c0t)

La condition initiale w est transportée le long de l’axe Ox , à la vitesse c0.

w(x) =

8
<

:

1 � x si x 2 [0, 1],
1 + x si x 2 [�1, 0],
0 si x 62 [�1,+1].
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Propriétés (c(x , t) = c0, f = 0)

Si w(x) � 0 pour tout x 2 R, alors u(x , t) � 0 pour tout x 2 R et t > 0

sup
x2R

|u(x , t)|  sup
x2R

|w(x)|, 8t > 0
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Principe de conservation

@u

@t
(x , t) + c0

@u

@x
(x , t) = f (x , t) 8x 2 R, 8t > 0,

a < b quelconques

Z
b

a

@u

@t
(x , t)dx + c0

Z
b

a

@u

@x
(x , t)dx =

Z
b

a

f (x , t)dx

d

dt

Z
b

a

u(x , t)dx + [c0u(x , t)]b
a

=

Z
b

a

f (x , t)dx
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Méthode de différences finies

@u

@t
(x , t) + c(x , t)

@u

@x
(x , t) = f (x , t) 8x 2 R, 8t > 0,

Pas spatial h > 0, pas temporel ⌧ > 0, xj = jh, j = 0,±1,±2, . . ., tn = n⌧ , n = 0, 1, 2, . . ..

Grille:
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Méthode de différences finies centrées

@u

@t
(x , t) + c(x , t)

@u

@x
(x , t) = f (x , t) 8x 2 R, 8t > 0,

Chercher un

j
' u(xj , tn):

u
n+1

j
� un

j

⌧
+ c(xj , tn)

un

j+1
� un

j�1

2h
= f (xj , tn), j = 0,±1,±2, . . . , n = 0, 1, 2, . . .

L’approximation initiale est définie par u0

j
= w(xj) pour j = 0,±1,±2, . . .

Schéma numérique d’ordre deux en espace (O(h2)) et un en temps (O(⌧))
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Schéma explicite centré

u
n+1

j
� un

j

⌧
+ c(xj , tn)

un

j+1
� un

j�1

2h
= f (xj , tn), j = 0,±1,±2, . . . , n = 0, 1, 2, . . .

u
n+1

j
= u

n

j + ⌧

 
f (xj , tn)� c(xj , tn)

un

j+1
� un

j�1

2h

!
.
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Définition

Un schéma numérique est stable si, lorsque f ⌘ 0:

1. Si un

i
� 0, i 2 Z, alors u

n+1

i
� 0, i 2 Z

2.

sup
i2Z

|u
n+1

i
|  sup

i2Z
|u

n

i |
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Résultat (sans démonstration)

Si c = c0, f = 0, w assez régulière et 2⇡-périodique:

w(x) =
+1X

m=�1
↵me

imx , ↵m =
1

2⇡

2⇡Z

0

w(x)e�imx
dx .

alors

u
n

j =
+1X

m=�1
↵me

imjh

0

B@1 �
c0⌧

h
i sinmh

| {z }
?

1

CA

n

où le module du coefficient d’amplification de la m-ième harmonique estq
1 +

�
c0⌧
h

sinmh
�2

> 1
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Conséquence

Le schéma explicite centré est toujours instable!

C’est un mauvais schéma numérique qu’il ne faut surtout pas utiliser !
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Schéma décentré (upwind)

Principe

Transporter dans le sens des x positifs lorsque c0 est positif, et dans le sens des x

négatifs lorsque c0 est négatif.

Si c0 > 0:

u
n+1

j
� un

j

⌧
+ c0

un

j
� un

j�1

h
= f (xj , tn),

pour j = 0,±1,±2, . . ., n = 0, 1, 2, . . .
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Schéma décentré (upwind)

u
n+1

j
� un

j

⌧
+ c(xj , tn)

un

j
� un

j�1

h
= f (xj , tn) si c(xj , tn) > 0

(on dit que le schéma est décentré en arrière)

u
n+1

j
� un

j

⌧
+ c(xj , tn)

un

j+1
� un

j

h
= f (xj , tn) si c(xj , tn) < 0

(on dit que le schéma est décentré en avant).
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Schéma explicite

Si c0 > 0 et f = 0

u
n+1

j
� un

j

⌧
+ c0

un

j
� un

j�1

h
= 0

u
n+1

j
= u

n

j

⇣
1 �

⌧c0

h

⌘
+ u

n

j�1

⇣⌧c0

h

⌘
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Résultat (stabilité)

Le schéma explicite décentré est stable si

⇣
1 �

⌧c0

h

⌘
� 0 ,

⌧

h


1

|c0|

Si c n’est pas constant, la condition de stabilité devient

⌧

h


1

sup
x2R,t>0

|c(x , t)|
.

Le schéma explicite décentré est conditionnellement stable. La condition de stabilité est

appelée condition de Courant-Friedrichs-Lewy ou condition CFL.
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Démonstration
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Démonstration (2)
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Démonstration (3)
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Extension: Intervalle borné

Chercher u : (x , t) 2 [0, 1]⇥ R+
! u(x , t) 2 R telle que :

@u

@t
(x , t) + c(x , t)

@u

@x
(x , t) = f (x , t) 8x 2 [0, 1], 8t > 0,

avec la condition initiale

u(x , 0) = w(x) 8x 2 [0, 1]
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Extension : Intervalle borné (2)

@u

@t
(x , t) + c(x , t)

@u

@x
(x , t) = f (x , t) 8x 2 [0, 1], 8t > 0,

• Si c(0, t) > 0, imposer u(0, t)

• Si c(1, t) < 0, imposer u(1, t)
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Extension : le cas 2D
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Equation de transport 2D

Chercher u : (x1, x2, t) 2 R⇥ R+
! u(x1, x2, t) 2 R telle que :

@u

@t
(x1, x2, t) + ~c(x1, x2, t) ·

��!
gradu(x1, x2, t) = f (x1, x2, t) 8(x1, x2) 2 R2, 8t > 0,

avec la condition initiale

u(x1, x2, 0) = w(x1, x2) 8(x1, x2) 2 R2.
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Illustration
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