Analyse numérique

Approximation de problémes hyperboliques. Equation de transport
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Equation de transport 1D

Soient:

ec:(x,t)eRxR" = c(x,t) eR

e fi(x,t)eRxR" = f(x,t)eR

e w:xeR—-wkx)eR

Chercher u: (x,t) € R x Rt — u(x,t) € R telle que :

ou

ot

avec la condition initiale

(x, 1)+ c(x, t)@(x, t)="f(x,t) VxeR, Vt>O0,

ox

u(x,0) = w(x) Vx € R.
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Cas particulier

Chercher u: (x,t) € R x Rt — u(x,t) € R telle que :

ou ou
E(X’t)+coa7(x’t)_o VxeR, Vit>D0,

avec la condition initiale

u(x,0) = w(x) Vx € R.

Alexandre Caboussat Analyse numérique 4/25



Solution exacte

u(x,t) = w(x — cot)

La condition initiale w est transportée le long de I'axe Ox, a la vitesse ¢y.

1—x sixel0,1],
w(x)=< 1+x sixe[-1,0],

0 six¢[-1,+1].
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Propriétés (c(x, t) = ¢y, f = 0)

Si w(x) > 0 pour tout x € R, alors u(x,t) > 0 pourtoutx c Rett >0 J

sup [u(x, )| < sup [w(x)|, Vt>0
XeR XER
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Principe de conservation

ou ou
E(X’ )+ coa(x, ) =1f(x,t) ¥YxeR, Vi>0, l

a < b quelconques

b ou bou b
x,tdx+c/ —(x,Hdx = /fx,tdx
| Gitetoxra [y [t

gt/b u(x, H)dx + [cou(x, 1)]2 = /b f(x, t)dx
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Méthode de différences finies

ou ou
E(X, ) + c(x, t)a—x(x, ) =1f(x,t) VxeR, Vt>0, l

Pas spatial h > 0, pas temporel 7 > 0, x; = jh, j=0,£1,£2,.. ., tp=n7,n=0,1,2,....

Grille:
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Méthode de différences finies centrées

ou ou
E(X, ) + c(x, t)a—x(x, ) =1f(x,t) VxeR, Vt>0, l

Chercher u ~ u(Xj, tn):

Un+1 —_uyn un n

! ! no_uf
T T 4 e(x, tn) ’“2h =1 f(xty), j=0,41,42,..., n=01,2,. ..

Lapproximation initiale est définie par ujQ = w(x;) pourj=0,%+1,£2,...

Schéma numérique d’ordre deux en espace (O(h?)) et un en temps (O(7))
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Schéma explicite centré

U(H—1 —_yn un n \

] —Uu
¥+c(n,tn)%=f()q,tn), j=0,£1,42,..., n=0,1,2,...
-

u = i 47 ( 106, 1) - 0 1) L0
i =Y i )=
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Un schéma numérique est stable si, lorsque f = 0:
1. Siu’>0,icZalorsu™ >0,icZ
2.
sup ]u,-"“] < sup |u]|
i€Z i€Z
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Résultat (sans démonstration)

Sic = ¢y, f =0, wassez réguliere et 2r-périodique:

2m
1 »
w(x) = Z ame™,  ap= 5 /W(x)e mX efx .
m=—oo a 0
alors
n
= CoT
n _ imjh 0’ .
up = Z amé 1 - isin mh
m=—oo ﬁf_/

ou le module du coefficient d’amplification de la m-ieme harmonique est
V1 + (82 sinmh)? > 1
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Conséquence

Le schéma explicite centré est toujours instable!

C’est un mauvais schéma numérique qu’il ne faut surtout pas utiliser !
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Schéma décentré (upwind)

Transporter dans le sens des x positifs lorsque ¢, est positif, et dans le sens des x
négatifs lorsque cy est négatif.

Sicy > 0:
n+1 n
I P M el
T h
pourj=0,+1,42 ...,n=0,1,2,...
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Schéma décentré (upwind)

uj’”r1 —u" um — un

] ] j—1
S (X, fn)T = f(Xj, tn)

(on dit que le schéma est décentré en arriere)

— n

! ul s —u
%j + ¢(xj, tn)% = f(Xj, tn)

(on dit que le schéma est décentré en avant).

u_n+1 un
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Schéma explicite

Sicg>0etf=0
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Résultat (stabilité)

Le schéma explicite décentré est stable si

(1—E)ZO &

Si ¢ n’est pas constant, la condition de stabilité devient

1

L
h = sup [e(x,1)]
XER,t>0

Le schéma explicite décentré est conditionnellement stable. La condition de stabilité est
appelée condition de Courant-Friedrichs-Lewy ou condition CFL.
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Démonstration
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Démonstration (2)
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Démonstration (3)
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Extension: Intervalle borné

Chercher u: (x,t) € [0,1] x RT — u(x, t) € R telle que :

ou ou
a(x, t) + c(x, t)a—x(x, t)=1f(x,t) vxel0,1], V>0,

avec la condition initiale

u(x,0) = w(x) Vx € [0,1]

Alexandre Caboussat Analyse numérique 21/25



Extension : Intervalle borné (2)

ou

8t(Xt)+C(Xt) ( t)=f(x,t) vxel0,1], Vt>0,

® Sic(0,t) >0, imposer u(0, t)
e Sic(1,t) <0, imposer u(1,t)
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Extension : le cas 2D
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Equation de transport 2D

Chercher u: (x4, x2,t) € R x Rt — u(x1, X2, t) € R telle que :

0 .
S 01,0, 1)+ E0x1, 0, 1) - gradu(x, xe, 1) = F(x1, 0, 1) VX1, ) € R, V>0,

avec la condition initiale

u(x1,x2,0) = w(xi,x2)  V¥(x1,x) € R%.
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lllustration
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