
Analyse numérique

Approximation de problèmes hyperboliques. Equation des ondes
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Illustration 1D : corde vibrante
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Equation des ondes 1D

• f : (x , t) 2 [0, 1]⇥ R+ ! f (x , t) 2 R
• w : x 2 [0, 1] ! w(x) 2 R
• v : x 2 [0, 1] ! v(x) 2 R
• c > 0

Chercher u : (x , t) 2 [0, 1]⇥ R+ ! u(x , t) 2 R telle que

@2u
@t2

(x , t)� c2@
2u

@x2
(x , t) = f (x , t) 8x 2]0, 1[, 8t > 0,

u(0, t) = u(1, t) = 0 8t > 0,

u(x , 0) = w(x) et
@u
@t

(x , 0) = v(x) 8x 2]0, 1[.

Alexandre Caboussat Analyse numérique 4 / 27



Définition

L’équation des ondes 1D est appelée problème hyperbolique d’ordre deux,

A cette équation nous ajoutons deux conditions aux limites, ainsi que deux conditions

initiales.
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Cas particulier

f = 0, v = 0, w(0) = w(1) = 0

Introduisons la fonction 2-périodique ! : R ! R définie par

!(x) =
⇢

w(x) si x 2 [0, 1]
�w(�x) si x 2 [�1, 0]

(prolongement par imparité et périodicité)

Solution:

u(x , t) =
1

2

⇣
!(x � ct) + !(x + ct)

⌘
8x 2 [0, 1], 8t � 0,
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Vérification
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Principe de conservation

@2u
@t2

(x , t)� c2@
2u

@x2
(x , t) = f (x , t)

Z
1

0

@2u
@t2

(x , t)
@u
@t

(x , t) dx � c2

Z
1

0

@2u
@x2

(x , t)
@u
@t

(x , t)dx =

Z
1

0

f (x , t)
@u
@t

(x , t)dx

d
dt
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✓
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◆2
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@2u
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Interprétation

Le déplacement vertical u de la corde est la somme de deux ondes se propageant de

droite à gauche et de gauche à droite à la vitesse c.
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Méthode de différences finies

Soit N, h = 1

N+1
, xj = jh j = 0, 1, 2, . . . ,N + 1.

Semi-discrétisation en espace

Chercher uj(t) ' u(xj , t) :

d2

dt2
uj(t) + c2

�uj�1(t) + 2uj(t)� uj+1(t)
h2

= f (xj , t) j = 1, ...,N, 8t > 0,

u0(t) = uN+1(t) = 0 8t > 0,

uj(0) = w(xj) et
d
dt

uj(0) = v(xj) j = 1, . . . ,N.
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Système différentiel (du deuxième ordre)

A =
1

h2

2

66664

2 �1

�1
. . .

. . .

. . .
. . . �1

�1 2

3

77775
,

• ~u(t) = [u1(t), . . ., uN(t)]T , ~f (t) = [f (x1, t), . . ., f (xN , t)]T

• ~w = [w(x1), . . ., w(xN)]
T , ~v = [v(x1), . . ., v(xN)]

T

~̈u(t) + c2A~u(t) = ~f (t) 8t > 0,

~u(0) = ~w , ~̇u(0) = ~v ,
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Méthode de Newmark

Soit ⌧ > 0, tn = n⌧ , n = 0, 1, 2, . . .,

~̈u(t) + c2A~u(t) = ~f (t)

Chercher ~un ' ~u(tn):

~un+1 � 2~un + ~un�1

⌧2
+ c2A~un = ~f (tn), n = 1, 2, . . . ,

~u0 = ~w ,

~u1 =??
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Méthode de Newmark

Soit ⌧ > 0, tn = n⌧ , n = 0, 1, 2, . . .,

Chercher ~un ' ~u(tn):

~un+1 � 2~un + ~un�1

⌧2
+ c2A~un = ~f (tn), n = 1, 2, . . . ,

~u0 = ~w ,

~u1 =??
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Calcul de ~u1

~u1 = ~w + ⌧~v +
1

2
⌧2

⇣
~f (0)� c2A~w

⌘
.
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Schéma explicite

~un+1 � 2~un + ~un�1

⌧2
+ c2A~un = ~f (tn)

Connaissant ~u0 et ~u1, on calcule (pour n = 1, 2, . . .):

~un+1 = (2I � ⌧2c2A)~un � ~un�1 + ⌧2~f (tn),

Avec � = ⌧2c2/h2 (et un
0
= un

N+1
= 0):

un+1

j = 2 (1 � �) un
j + �

⇣
un

j�1 + un
j+1

⌘
� un�1

j + ⌧2f (xj , tn),

pour j = 1, . . . ,N.
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Alternative: discrétisations simultanées

@2u
@t2

(x , t)� c2@
2u

@x2
(x , t) = f (x , t)
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Analyse de stabilité (idée)

Posons f = 0 et v = 0. Supposons

w(x) = sin (m⇡x)

où m est un entier positif (sinon: développer w(x) en série de Fourier)
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Solution exacte

Si w(x) = sin (m⇡x):

u(x , t) =
1

2

⇣
w(x � ct) + w(x + ct)

⌘
= sin(m⇡x) cos(m⇡ct)

Formule trigonométrique:

sin(↵+ �) + sin(↵� �) = 2 sin↵ cos�, ↵,� 2 R
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Solution approchée

Pour j = 1, . . . ,N

un+1

j = 2(1 � �)un
j + �(un

j�1 + un
j+1)� un�1

j

Formules trigonométriques.... (again!)
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Solution approchée (2)

On peut montrer que

un
j = ↵n sin(m⇡jh),

avec

↵0 = 1

↵1 = 1 � �(1 � cos(m⇡h))
↵2 = 2↵1↵1 � ↵0

...

↵n = 2↵1↵n�1 � ↵n�2
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Comparaison

un
j = ↵n sin(m⇡jh),

vs

u(xj , tn) = sin(m⇡jh) cos(m⇡cn⌧)

Définition

Le schéma est stable s’il existe C telle que:

|↵n|  C, n = 0, 1, 2, . . . , m = 1, 2, . . .
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Théorèmes (sans démonstration)

Résultat 1

Le schéma est stable si la condition CFL suivante est satisfaite :

⌧  h
c
.

Résultat 2

Si la condition CFL est satisfaite, alors h � ⌧c et le schéma numérique est d’ordre 2, i.e.,

max
j=1,...,N

|uM
j � u(xj ,T )|  Ch2, si h ! 0,

où C indépendante de M et N.

Alexandre Caboussat Analyse numérique 21 / 27



Equation des ondes et éléments finis
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Eléments finis

@2u
@t2

(x , t) � c2@
2u

@x2
(x , t) = f (x , t)

Pour tout t > 0, multiplier par une fonction test v : x 2 [0, 1] ! '(x) 2 R appartenant à V :

@2u
@t2

(x , t) � c2@
2u

@x2
(x , t) = f (x , t)

@2u
@t2

(x , t)v(x)� c2@
2u

@x2
(x , t)v(x) = f (x , t)v(x)

Z
1

0

@2u
@t2

(x , t)v(x)dx � c2

Z
1

0

@2u
@x2

(x , t)v(x)dx =

Z
1

0

f (x , t)v(x)dx
Z

1

0

@2u
@t2

(x , t)v(x)dx + c2

Z
1

0

@u
@x

(x , t) · v 0(x)dx =

Z
1

0

f (x , t)v(x)dx
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Système différentiel

Z
1

0

@2u
@t2

(x , t)v(x)dx + c2

Z
1

0

@u
@x

(x , t) · v 0(x)dx =

Z
1

0

f (x , t)v(x)dx

• '1,'2, . . . ,'N 2 V
• Vh = span{'1,'2, . . . ,'N}
• Soit uh ' u:

uh(x , t) =
NX

i=1

ui(t)'i(x) 8x 2 ⌦.

• Choisir v = 'j , j = 1, . . . ,N.
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Système différentiel (2)

NX

i=1

üi(t)
Z

1

0

'i(x)'j(x)dx + c2

NX

i=1

ui(t)
Z

1

0

'0
i(x)'

0
j(x)dx =

Z
1

0

f (x , t)'j(x)dx ,

j = 1, . . . ,N, 8t > 0.
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Système différentiel (3)

Mji =

Z
1

0

'i(x)'j(x)dx , i , j = 1, . . . ,N, (matrice de masse)

Aji =

Z
1

0

'0
i(x)'

0
j(x)dx , i , j = 1, . . . ,N, (matrice de rigidité)

fj(t) =

Z
1

0

f (x , t)'j(x)dx , j = 1, . . . ,N, (second membre)

M~̈u(t) + c2A~u(t) = ~f (t), 8t > 0.
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Schéma de Newmark

M
~un+1 � 2~un + ~un�1

⌧2
+ c2A~un = ~f (tn)

Résoudre un système pour obtenir ~un+1 car M n’est pas diagonale! Le schéma n’est pas

explicite!

Pour le rendre explicite, on calcule M utilisant la formule de quadrature des trapèzes.

Mji =

1Z

0

'i(x)'j(x)dx ' Lh('i'j) =

⇢
h si i = j ,
0 si i 6= j .

Ce procédé s’appelle mass lumping.
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