Analyse numérique

Approximation de problémes hyperboliques. Equation des ondes

Alexandre Caboussat
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lllustration 1D : corde vibrante
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Equation des ondes 1D

f:(x,t)€[0,1] xRt = f(x,t) eR
w:xel0,1] - w(x)eR
v:xe[0,1] - v(x)eR

e c>0

Chercher u: (x,t) € [0,1] x RT — u(x, t) € R telle que

Gl (x f) = f(x,f) Vxel0,1[ Vi>0
o2 a W T ’
u(0, 1) = u(1,1) = 0 vt > 0,

u(x,0) = w(x) et ?92‘ (x,0) =v(x) Vx€]0,1].
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Définition
Léquation des ondes 1D est appelée probleme hyperbolique d’ordre deux,

A cette équation nous ajoutons deux conditions aux limites, ainsi que deux conditions
initiales.
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Cas particulier

f=0,v=0,w(0)=w(1)=0

Introduisons la fonction 2-périodique w : R — R définie par

f w(x) ixel0,1]
w(x) = { —w(—x) Zix €[-1,0]

(prolongement par imparité et périodicité)
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Principe de conservation

d2u 502U
ﬁ()ﬁ t)—c W(X’ 1) =f(x,1)
1 92u ou > [19%u ou ! ou
[ SEenGnax—c axz(x,t)at(x,t)dx_/o flx, 1) (x, o

d {11 [ou\? , [1ou 2u , [ouou*=" 1 ou
m(/o 2<8t> dx) T axaox T © [axatLo—/o T

d {1 /0u\? L ("1 [ou\? T ou
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Interprétation

Le déplacement vertical u de la corde est la somme de deux ondes se propageant de
droite a gauche et de gauche a droite a la vitesse c. l
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Méthode de différences finies

Soit N, h=wlq, x;=jhj=0,1,2,... N+1.

Semi-discrétisation en espace

Chercher u;(t) ~ u(x;, t) :
a? —Uj—1 (1) +20;(t) — uj4(1) :
U+ G h; R —f(x,t) j=1,.,N, Vt>0,
Up(t) = un41(t) =0 vt >0,
d .
4i(0) = w(x) et —u;(0) = v(x) j=1,.sN.
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Systéme différentiel (du deuxiéme ordre)

2 -1
1|1
A= B
1 2
o G(t) = [us(t), ... un(O]7 F() = [0, 1), FOn 0]
o W= [W(xt), o WO, T = [VO), e VO]

) b
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Méthode de Newmark

Soit7>0,tpb=nr,n=0,1,2,...,

U(t) + AU(t) = (1)
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Méthode de Newmark

Soit7>0,tpb=nr,n=0,1,2,...,

Chercher 4" ~ u(t,):

l—jn+1 —_ogn T l—jnf1

+ A" = f(t)), n=1,2,...,

72
i =w,
ol =77
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Calcul de &'
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Schéma explicite

ghtt —ogn 4 gn—1 . .
LY AT = K(ty)

T

Connaissant ° et i, on calcule (pour n=1,2,...):
i = (21— 72RA)I" — 0" + T2 (1),
Avec A\ = 72¢?/h? (et uf = uf,, = 0):

an+1 =2(1-Nu'+ )\(u/(7_1 + Uﬂﬂ) B U/m1 + 7104, 1),

pourj=1,...,N.
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Alternative: discrétisations simultanées
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Analyse de stabilité (idee)

Posons f = 0 et v = 0. Supposons
w(x) = sin (mnx)

ou m est un entier positif (sinon: développer w(x) en série de Fourier)
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Solution exacte

Si w(x) = sin (mnx):

u(x, t) = %(w(x —ct) + w(x + ct)) — sin(mmx) cos(mrct)

Formule trigonométrique:

sin(a + B) +sin(a — B) =2sinacos B, «a,B €R
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Solution approchée

Pourj=1,....N I

u™t = 201 = U+ AUl g+ uf ) — Ul

/ J

Formules trigonométriques.... (again!)
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Solution approchée (2)

On peut montrer que
u = apsin(mmjh),
avec
apg = 1
ar = 1— X1 — cos(mmh))
as = 2aq10q4 — Qg
ap = 20q0p_1 — Qp_2
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Comparaison

' = apsin(mmjh),

VS

u(x;, tn) = sin(mmjh) cos(mmenr)

Définition
Le schéma est stable s’il existe C telle que:

lan| < C, n=0,1,2,..., m=12,...
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Théoremes (sans démonstration)

Le schéma est stable si la condition CFL suivante est satisfaite :

T <

ol

Si la condition CFL est satisfaite, alors h > 7c et le schéma numérique est d’ordre 2, i.e.,

, TaxN|ujM —u(x;, T)| < CH?,  sih—0,
]: 2ty

ou C indépendante de M et N.
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Equation des ondes et éléments finis
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Eléments finis

0%u d%u
W(Xv t) _Czﬁ()g t) :f(X7 t) l

Pour tout t > 0, multiplier par une fonction test v : x € [0, 1] — ¢(x) € R appartenanta V:

82U 82u
S - CZW(X, = f(x,t)
d%u , 02U
S K DV(xX) = oS0 v(x) = f(x,hv(x)
1 92 1 a2 1
0 (;)tIQJ(X, t)V(X)dX—(;2 ; gXZ(X, Hv(x)dx = /0 f(x, t)v(x)dx
1 aZU 5 18U ) 1
o o X Dvixax e /o oy X0 V(x)ax = /0 F(x, Hv(x)dx
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Systeme différentiel

o1 ?;tg(X, t)v(x)dx + ¢? /01 %(X’ ) v e = /o1 fx, vix)ax J

® Y1,P2,..., PN € 4

® Vh = span{gm y P25+ SON}
e Soit u, ~ u:
N
up(x, 1) =Y ui(tpi(x)  VxeQ.
i=1
e Choisirv =, j=1,...,N.
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Systéme différentiel (2)

1 1
{002 (x)dx = /O F(x. o, (x)dlx,

j=1,...,N, Vt>O0.

0 /0 )0+ 63 u(r) /0
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Systéme différentiel (3)

wi(X)pj(x)dx, ihj=1,...,N, (matrice de masse)

f(x, t)pj(x j=1,...,N, (second membre)

h
;
Ai = /(p )pji(x)dx, i,j=1,...,N, (matrice de rigidité)
0
b

MU(t) + 2AU(t) = f(t),  Vi> 0.
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Schéma de Newmark

D’n+1 —_ 24" D’n—1 . .
M LY L AT = ()

T

Résoudre un systéme pour obtenir 4"t1 car M n’est pas diagonale! Le schéma n’est pas
explicite!

Pour le rendre explicite, on calcule M utilisant la formule de quadrature des trapezes.

1

h sii=j,

M;; = /ﬁpi(X)SOj(X)dX ~ Lp(pipj) = { 0 si ,7,gj
0

Ce procédé s’appelle mass lumping.
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