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Problème de convection-diffusion stationnaire

Soit f : x 2 [0, 1] ! f (x) 2 R, c : x 2 [0, 1] ! c(x) 2 R, " > 0 fixé.

Trouver u : x 2 [0, 1] ! u(x) 2 R tel que:

�"u00(x) + c(x)u0(x) = f (x) 8x 2]0, 1[,

u(0) = u(1) = 0.
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Convection-diffusion

�"u00(x) + c(x)u0(x) = f (x)

• Problème stationnaire (aucune variable temporelle).

• Si c(x) ⌘ 0, problème de diffusion stationnaire

• Si " = 0, problème de transport stationnaire
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Cas particulier

Cas c = c0 6= 0 et f = f0

�"u00(x) + c0u0(x) = f0

) équation différentielle linéaire à coefficients constants à résoudre explicitement

u(x) =
f0
c0

0

B@x �
1 � exp

⇣c0

"
x
⌘

1 � exp
⇣c0

"

⌘

1

CA 8x 2 [0, 1].
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Illustration

Si c0 > 0 et " << c0, alors u(x) ' f0x/c0, sauf dans un voisinage d’ordre "/c0 du point

limite x = 1 (couche limite).
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Différences finies centrées

Soit N un entier positif, h = 1

N+1
, xj = jh, j = 0, 1, . . . ,N + 1 et uj ' u(xj).

�"u00(x) + c(x)u0(x) = f (x)

Schéma centré

"
2uj � uj�1 � uj+1

h2
+ c(xj)

uj+1 � uj�1

2h
= f (xj), j = 1, . . . ,N,

avec u0 = uN+1 = 0.
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Système linéaire

Si c(x) = c0, f (x) = f0:

A =

2

66666666664

2"

h2
� "

h2
+

c0

2h

� "

h2
� c0

2h
. . .

. . .

. . .
. . . � "

h2
+

c0

2h

� "

h2
� c0

2h
2"

h2

3

77777777775

et fj = f0, j = 1, . . . ,N.

A~u = ~f
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Remarque (c(x) = c0 6= 0, f (x) = f0)

"
2uj � uj�1 � uj+1

h2
+ c0

uj+1 � uj�1

2h
= f0, j = 1, . . . ,N,

2"

h2
uj +

⇣
� "

h2
� c0

2h

⌘
uj�1 +

⇣
� "

h2
+

c0

2h

⌘
uj+1 = f0, j = 1, . . . ,N,

• Si h = 2"/c0, on a

uj =
f0xj

c0

• Si h < 2"/c0, solution numérique correcte.

• Si h > 2"/c0, oscillations au voisinage de la couche limite. Le pas d’espace h est

trop grand par rapport à la couche limite (⇠ "/c0)
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Différences finies décentrées

Si ↵j 2 (0, 1), alors

u0(xj) ' ↵j
uj � uj�1

h
+ (1 � ↵j)

uj+1 � uj

h
(moyenne pondérée entre différences finies rétrograde et progressive)

Schéma numérique :

"
2uj � uj+1 � uj�1

h2
+

c(xj)

h

⇣
↵j(uj � uj�1) + (1 � ↵j)(uj+1 � uj)

⌘
= f (xj), j = 1, . . . ,N

avec u0 = uN+1 = 0.
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Remarques

• Si ↵j = 1/2, pour tout j , le schéma est le schéma centré (oscillant si h pas

suffisamment petit!)

• Choix optimal de ↵j?
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Schéma upwind

Supposons c(x) = c0 � 0:

"
2uj � uj+1 � uj�1

h2
+ c0

uj � uj�1

h
= f (xj), j = 1, . . . ,N

avec u0 = uN+1 = 0.
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Diffusion numérique

On peut montrer que le schéma upwind

"
2uj � uj+1 � uj�1

h2
+ c0

uj � uj�1

h
= f (xj), j = 1, . . . ,N

"⇤
2uj � uj+1 � uj�1

h2
+ c0

uj+1 � uj�1

2h
= f (xj), j = 1, . . . ,N

avec u0 = uN+1 = 0 et

"⇤ = "+ c0

h
2

Schéma upwind = schéma centré avec diffusion numérique
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Problème de convection-diffusion évolutif

Soit c0 > 0, " > 0 fixé.

Trouver u : [0, 1]⇥ R+ ! u(x , t) 2 R tel que:

@u
@t

(x , t)� "
@2u
@x2

(x , t) + c0

@u
@x

(x , t) = 0 8x 2]0, 1[, t > 0

u(0, t) = u(1, t) = 0, t > 0,

u(x , 0) = w(x), 8x 2]0, 1[
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Schéma implicite décentré

Supposons c0 � 0.

un+1

i � un
i

⌧
+ "

�un+1

i�1
+ 2un+1

i � un+1

i+1

h2
+ c0

un+1

i � un+1

i�1

h
= 0, 1  i  N,

un+1

0
= un+1

N+1
= 0,

u0

i = w(xi), 1  i  N.

⇣
1 + 2"

⌧

h2
+ c0

⌧

h

⌘
un+1

i �
⇣
"
⌧

h2
+ c0

⌧

h

⌘
un+1

i�1
� "

⌧

h2
un+1

i+1
= un

i .

Alexandre Caboussat Analyse numérique 16 / 20



Positivité

Si un
i � 0, i = 1, 2, . . . ,N, alors un+1

i � 0, i = 1, 2, . . . ,N.

⇣
1 + 2"

⌧

h2
+ c0

⌧

h

⌘
un+1

i =
⇣
"
⌧

h2
+ c0

⌧

h

⌘
un+1

i�1
+ "

⌧

h2
un+1

i+1
+ un

i .

Pour n fixé, notons k un entier tel que

un+1

k  un+1

j j = 0, 1, 2, . . . ,N + 1.

Supposons k 6= 0 et k 6= N + 1.

⇣
1 + 2"

⌧

h2
+ c0

⌧

h

⌘
un+1

k =
⇣
"
⌧

h2
+ c0

⌧

h

⌘
un+1

k�1
+ "

⌧

h2
un+1

k+1
+ un

k

�
⇣
"
⌧

h2
+ c0

⌧

h

⌘
un+1

k + "
⌧

h2
un+1

k + un
k ,

comme un+1

k�1
� un+1

k et un+1

k+1
� un+1

k .
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Positivité (2)

Si un
i � 0, i = 1, 2, . . . ,N, alors un+1

i � 0, i = 1, 2, . . . ,N.

Comme ⇣
1 + 2"

⌧

h2
+ c0

⌧

h

⌘
un+1

k �
⇣
"
⌧

h2
+ c0

⌧

h

⌘
un+1

k + "
⌧

h2
un+1

k + un
k ,

AInsi

un+1

k � un
k

Si un
j � 0, j = 0, . . . ,N:

0  un
k  un+1

k  un+1

j j = 0, 1, 2, . . . ,N + 1,

donc un+1

j � 0.
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Stabilité

max
0iN+1

|un+1

i |  max
0iN+1

|un
i |.

min
0jN+1

un+1

j = un+1

k � un
k � min

0jN+1

un
j .

Si on considère k tel que

un+1

k � un+1

j j = 0, 1, 2, . . . ,N + 1,

alors un+1

k  un
k et

max
0jN+1

un+1

j = un+1

k  un
k  max

0jN+1

un
j .

Ces inégalités sont appelées principe du minimum et du maximum discrets. Le schéma

est donc inconditionnellement stable.
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Système linéaire

⇣
1 + 2"

⌧

h2
+ c0

⌧

h

⌘
un+1

i �
⇣
"
⌧

h2
+ c0

⌧

h

⌘
un+1

i�1
� "

⌧

h2
un+1

i+1
= un

i .

Ce schéma est implicite. Il nécessite à chaque pas de temps la résolution d’un système

linéaire

A~un+1 = ~un.

A =

2

666666666664

1 +
2"⌧

h2
+

c0⌧

h
�"⌧

h2

� "⌧

h2
� c0⌧

h
. . .

. . .

. . .
. . . �"⌧

h2

�"⌧

h2
� c0⌧

h
1 +

2"⌧

h2
+

c0⌧

h

3

777777777775

.
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