Analyse numérique

Résolution de systémes linéaires
Méthodes itératives
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Probleme

Résoudre: ~
AX = b,

ol A est une N x N matrice réguliére et b est un N-vecteur.

Méthodes directes:
1. élimination de Gauss
2. décomposition LU
3. décomposition de Cholesky

= Nombre d’opérations ~ N° (si la matrice A est pleine)
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Méthodes itératives

Définition
Construire une séquence X°, X', x?,...,X",.. ., telle que

lim [|X — %"|| = 0.
n—oo
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Méthodes de décomposition

Soient K et M des matrices N x N telles que J

A=K-M
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Algorithme itératif

e X0 N-vecteur quelconque;
e pourn=20,1,2,3,... .
X" = KT'"Mx" + K~ 'b.
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Décomposition

Ecrivons A sous la forme
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Méthode de Jacobi

K=D et M=E+F ]

e K =D = diag (1/ay1,1/as,1/ass, ..., 1/ann)
e [ a matrice
J=K 'M=D"YE+F)

est appelée matrice de Jacobi.
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Méthode de Gauss-Seidel

K=D-E e M=F ]

e La méthode s’écrit: .
(D—E)X"™' =FX"+b
(systéme triangulaire inférieur)
e | a matrice
G=K'M=(D-E)'F
est appelée matrice de Gauss-Seidel.

¢ La méthode de Gauss-Seidel devrait étre plus performante que la méthode de Jacobi
puisqu’on tient compte, au fur et a mesure, des valeurs x,-’”r1 déja calculées.
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Convergence

Définition
Nous dirons que la méthode itérative

X = KM+ K 'h.

est convergente si limp_ ||X — X"|| = 0 pour tout b et pour tout X°.
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Rayon spectral

Définition
Soit B est une N x N matrice de valeurs propres complexes A1, Ao, ..., An.
Le rayon spectral de B est défini par

B) = :
p(B) 1;\.sz!%/|,

ou |\j| est le module (complexe) de Aj, 1 < j < N.

Théoréme

La méthode itérative X"+ = K—1MX" + K—1b est convergente si et seulement si
p(K~TM) < 1.
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Convergence de la méthode de Gauss-Seidel

Théoréeme

Si A est une matrice symétrique définie positive, alors la méthode de Gauss-Seidel est
convergente.

i.e.
p(G) < 1
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2 —1

-1 2 -1
A= symétrique définie positive
-1 2 -1
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Vitesse de convergence

p(J) est une mesure de la vitesse de convergence de la méthode itérative de Jacobi.

p(J)~1 <& vitesse est tres lente

On peut montrer qu'’il existe C indépendante de N telle que

1

VYN > 1.

Plus N est grand, et plus p(J) est proche de 1 (en restant toujours strictement inférieur a
1). La méthode de Jacobi converge trés lentement lorsque N est grand...
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Méthodes de relaxation

Soit Aune N x N matrice réguliére with a; # 0,1 < i < N.
A=D-E-F.
Siw #0:

w w

A-lp_E_ <1_“D+F>,

Posons

K = o 'D-E
M = o '1-w)D+F
A= K-M
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La méthode itérative

w

<1D—E> X1 — (1 ““Dp+ F) X"+ b.
w

Cette méthode est appelée méthode de relaxation nécessite la résolution d’'un systeme
triangulaire (comme la méthode de Gauss-Seidel)

e v = 1: méthode de Gauss-Seidel
® w < 1 sous-relaxation

® o > 1 sur-relaxation
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Théoreme

Définissons la matrice de la méthode itérative
1
G, = <1D— E> <1 ““Dy F> .
w w

Si A est une matrice tridiagonale définie positive, alors la méthode de Jacobi et la
méthode de relaxation sont convergentes lorsque 0 < w < 2. De plus, il existe un et un
seul paramétre de relaxation optimal wqp: €gal a

2
TV W)k

ou p(J) est le rayon spectral de la matrice J de la méthode de Jacobi.

Alexandre Caboussat Analyse numérique 19/36



Méthode SSOR

Alternance E et F:

<1D—E>}7”: (1 _wD+F>)?”+E,
w w

(19— F> X = <1_wD+ E) y"+ b,
w w

Méthode SSOR (symmetric successive overrelaxation) J
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Méthodes du gradient et du gradient conjugué

Supposons A est symétrique définie positive et résolvons AX = b.

Définition
L:RN 5 R:

Théoreme

Si A est une N x N matrice symétrique définie positive et si X est solution de AX = b
alors, pour tout N-vecteur y différent de X, on a :

L(X) < L(Y).

A\
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Démonstration

Soit X tel que AX = b et soit j # X.

L(y) =
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Méthode de descente

Méthode itérative
Soit X° donné. Calculer X"t tel que

LX) < £(X"), n=0,1,...

Idée: Choisir w™+! + 0 . Ensuite, poser:

)—('n+1 = X"+ an+1 Wn+1
ol o' € R minimise la quantité f(«) définie par

fla)=L (Y" + aW”‘H) :
Le vecteur w™+! est appelé direction de descente.
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lllustration
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Calcul de o'

Le parametre o™t tel que f(a™') < f(a), Va € R est tel que f'(a) = 0.

N N
flo)= £ (¥ + ™). L) =5 apy— > by
i=1

ij=1
Donc
N N N
f/(Oé) — Z Wln+1 8 E(Xn + awn+1) — Z WI_I7+1 Z alj (X]n 4 OéVV]rH_1) b’
i=1 ! i=1 j=1
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(Wn+1 )T (5 _ AY”)
(Wn+1 )TAV_I’/nJr‘I
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an+1 —



r":=b— AX"

est le résidu a I'étape n.
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Algorithme

Forn=0,1,2,...

e Choisir une direction de descente w"*1;
(Wn+1 )T,—:n

(Wn-H )TAV‘I}n-H ’

e Calculer X1 = XN 4 ot 1wn+1,

e Calculer o' =

= Choix de la direction de descente ?
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Méthode du gradient

w1 = grad £(X"). J

W™ = grad £(X") = AX" — b= —F".
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Algorithme

e Choisir X0 et calculer 7 = b — AX?;
e Pourn=0,1,2,..., calculer:

M = AP,
et _ PP
- (Fn)Tzn+1 ’
)—(*n+1 — XN _ an+1,—:n
)
Fn+1 — 7 _ an+12n+1’

e Si /1 =0 STOP.
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Résultat

Théoréeme

Si A est une matrice symétrique définie positive, alors la méthode du gradient converge.

Problémes:
1. Convergence lente
2. Convergence perdue a cause des erreurs d’arrondis.
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Méthode du gradient conjugué

W — _P 4 g, J

Rationale:
¢ Correction de la direction —7".
e (3" calculé afin de minimiser I'erreur entre X et X!
e Sans entrer dans les détails, on peut montrer
(Fn)TAWn

5" =
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Algorithme

e Choisir X0 et calculer 1° = b — AX;
e Effectuer une itération avec la méthode du gradient:

2O\ T 7,1
-1 _ =0 21 _ a1 1 (rF)'w 21 _ =0 1 =1
W—*I’, Z—AW, Q_W’ =X +O[W
e Pourn=0,1,2,..., calculer:
— =n—1 -
7no— -1 anZn,
n (Fn)Tzn -n—+1 2n n>n
B = Wy W' = —rt+ 5w,
2\ T 7,n+1
0+l _ AT ot — (rm " wmt
= ) - (VT,n+1)T2n+1’

)—(*n+1 — )-(’n + an+1 Wn+1‘

e Sir" =0 STOP.
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Résultat

Théoréeme

Si A estune N x N matrice symétrique définie positive, alors la méthode du gradient
conjugué fournit la solution X en au plus N itérations. Ainsi il existe n < N tel que 7" = 0.
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