
Analyse numérique

Résolution de systèmes linéaires

Méthodes itératives

Alexandre Caboussat

Alexandre Caboussat Analyse numérique 2 / 36



Problème

Résoudre:

A~x = ~b,

où A est une N ⇥ N matrice régulière et ~b est un N-vecteur.

Méthodes directes:

1. élimination de Gauss

2. décomposition LU
3. décomposition de Cholesky

) Nombre d’opérations ⇠ N3 (si la matrice A est pleine)
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Méthodes itératives

Définition

Construire une séquence ~x0,~x1,~x2, . . . ,~xn, . . ., telle que

lim
n!1

k~x � ~xnk = 0.
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Méthodes de décomposition

Soient K et M des matrices N ⇥ N telles que

A = K � M

Si K est régulière:

K~x = M~x + ~b

ou

~x = K�1M~x + K�1~b
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Algorithme itératif

• ~x0 N-vecteur quelconque;

• pour n = 0, 1, 2, 3, . . .
~xn+1 = K�1M~xn + K�1~b.

En pratique:

~c = M~xn + ~b
K~xn+1 = ~c

) par exemple K diagonale ou triangulaire
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Décomposition

Ecrivons A sous la forme

A = D � E � F

A =

2

666666664

. . .

. . . �F
D

�E . . .

. . .

3

777777775

Si aii 6= 0, i = 1, 2, . . . ,N, alors D et (D � E) sont régulières. On peut choisir

1. K = D
2. K = D � E
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Méthode de Jacobi

K = D et M = E + F

• K�1 = D�1 = diag (1/a11, 1/a22, 1/a33, . . . , 1/aNN)

• La matrice

J = K�1M = D�1(E + F )

est appelée matrice de Jacobi.

Alexandre Caboussat Analyse numérique 9 / 36



Méthode de Gauss-Seidel

K = D � E et M = F

• La méthode s’écrit:

(D � E)~xn+1 = F~xn + ~b

(système triangulaire inférieur)

• La matrice

G = K�1M = (D � E)�1F

est appelée matrice de Gauss-Seidel.

• La méthode de Gauss-Seidel devrait être plus performante que la méthode de Jacobi

puisqu’on tient compte, au fur et à mesure, des valeurs xn+1

i déjà calculées.
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Convergence

Définition

Nous dirons que la méthode itérative

~xn+1 = K�1M~xn + K�1~b.

est convergente si limn!1 k~x � ~xnk = 0 pour tout ~b et pour tout ~x0.
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Rayon spectral

Définition

Soit B est une N ⇥ N matrice de valeurs propres complexes �1,�2, . . . ,�N .

Le rayon spectral de B est défini par

⇢(B) = max
1jN

|�j |,

où |�j | est le module (complexe) de �j , 1  j  N.

Théorème

La méthode itérative ~xn+1 = K�1M~xn + K�1~b est convergente si et seulement si

⇢(K�1M) < 1.
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Convergence de la méthode de Gauss-Seidel

Théorème

Si A est une matrice symétrique définie positive, alors la méthode de Gauss-Seidel est

convergente.

i.e.

⇢(G) < 1
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Exemple

A =

2

666664

2 �1

�1 2 �1

. . .
. . .

. . .

�1 2 �1

�1 2

3

777775
symétrique définie positive

• La méthode de Gauss-Seidel pour résoudre A~x = ~b est convergente.
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Vitesse de convergence

⇢(J) est une mesure de la vitesse de convergence de la méthode itérative de Jacobi.

⇢(J) ' 1 , vitesse est très lente

On peut montrer qu’il existe C indépendante de N telle que

|1 � ⇢(J)|  C
1

N2
, 8N > 1.

Plus N est grand, et plus ⇢(J) est proche de 1 (en restant toujours strictement inférieur à

1). La méthode de Jacobi converge très lentement lorsque N est grand...
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Exemple

Méthode de Gauss-Seidel

Comme G = (D � E)�1F , on peut montrer que

⇢(G) = ⇢(J)2.
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Méthodes de relaxation

Soit A une N ⇥ N matrice régulière with aii 6= 0, 1  i  N.

A = D � E � F .

Si ! 6= 0:

A =
1

!
D � E �

✓
1 � !

!
D + F

◆
,

Posons

K = !�1D � E
M = !�1(1 � !)D + F
A = K � M
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Définition

La méthode itérative

✓
1

!
D � E

◆
~xn+1 =

✓
1 � !

!
D + F

◆
~xn + ~b.

Cette méthode est appelée méthode de relaxation nécessite la résolution d’un système

triangulaire (comme la méthode de Gauss-Seidel)

• ! = 1: méthode de Gauss-Seidel

• ! < 1 sous-relaxation

• ! > 1 sur-relaxation

Alexandre Caboussat Analyse numérique 18 / 36



Théorème

Définissons la matrice de la méthode itérative

G! =

✓
1

!
D � E

◆�1 ✓
1 � !

!
D + F

◆
.

Si A est une matrice tridiagonale définie positive, alors la méthode de Jacobi et la

méthode de relaxation sont convergentes lorsque 0 < ! < 2. De plus, il existe un et un

seul paramètre de relaxation optimal !opt égal à

!opt =
2

1 +
p

1 � ⇢(J)2
,

où ⇢(J) est le rayon spectral de la matrice J de la méthode de Jacobi.
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Méthode SSOR

Alternance E et F :

✓
1

!
D � E

◆
~yn =

✓
1 � !

!
D + F

◆
~xn + ~b,

✓
1

!
D � F

◆
~xn+1 =

✓
1 � !

!
D + E

◆
~yn + ~b,

Méthode SSOR (symmetric successive overrelaxation)
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Méthodes du gradient et du gradient conjugué

Supposons A est symétrique définie positive et résolvons A~x = ~b.

Définition

L : RN ! R:

L(~y) = 1

2
~yT A~y � ~bT~y .

Théorème

Si A est une N ⇥ N matrice symétrique définie positive et si ~x est solution de A~x = ~b
alors, pour tout N-vecteur ~y différent de ~x , on a :

L(~x) < L(~y).
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Démonstration

Soit ~x tel que A~x = ~b et soit ~y 6= ~x .

L(~y) =

L(~x � ~z) =
1

2
(~x � ~z)T A(~x � ~z)� ~bT (~x � ~z)

=
1

2
~xT A~x � ~bT~x � 1

2
~zT A~x � 1

2
~xT A~z +

1

2
~zT A~z + ~bT~z

= L(~x)� ~zT A~x + ~zT~b +
1

2
~zT A~z

= L(~x)� ~zT
⇣

A~x � ~b
⌘
+

1

2
~zT A~z

= L(~x) + 1

2
~zT A~z.

A est symétrique définie positive et ~z 6= ~0 implique ~zT A~z > 0 et ainsi L(~y) > L(~x).
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Méthode de descente

Méthode itérative

Soit ~x0 donné. Calculer ~xn+1 tel que

L(~xn+1) < L(~xn), n = 0, 1, . . .

Idée: Choisir ~wn+1 6= ~0 . Ensuite, poser:

~xn+1 = ~xn + ↵n+1~wn+1

où ↵n+1 2 R minimise la quantité f (↵) définie par

f (↵) = L
⇣
~xn + ↵~wn+1

⌘
.

Le vecteur ~wn+1 est appelé direction de descente.
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Illustration
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Calcul de ↵n+1

Le paramètre ↵n+1 tel que f (↵n+1)  f (↵), 8↵ 2 R est tel que f 0(↵) = 0.

f (↵) = L
⇣
~xn + ↵~wn+1

⌘
, L(~y) = 1

2

NX

i,j=1

aijyiyj �
NX

i=1

biyi

Donc:

f 0(↵) =
NX

i=1

wn+1

i
@

@yi
L(~xn + ↵~wn+1) =

NX

i=1

wn+1

i

0

@
NX

j=1

aij

⇣
xn

j + ↵wn+1

j

⌘
� bi

1

A

= (~wn+1)T
⇣

A
⇣
~xn + ↵~wn+1

⌘
� ~b

⌘
.
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↵n+1 =
(~wn+1)T

⇣
~b � A~xn

⌘

(~wn+1)T A~wn+1
.
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Définition

~r n := ~b � A~xn

est le résidu à l’étape n.
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Algorithme

For n = 0, 1, 2, . . .

• Choisir une direction de descente ~wn+1;

• Calculer ↵n+1 =
(~wn+1)T~r n

(~wn+1)T A~wn+1
.

• Calculer ~xn+1 = ~xn + ↵n+1~wn+1.

) Choix de la direction de descente ?
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Méthode du gradient

~wn+1 = ~grad L(~xn).

~wn+1 = ~grad L(~xn) = A~xn � ~b = �~r n.
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Algorithme

• Choisir ~x0 et calculer ~r0 = ~b � A~x0;

• Pour n = 0, 1, 2, . . ., calculer:

~zn+1 = �A~r n,

↵n+1 =
k~r nk2

(~r n)T~zn+1
,

~xn+1 = ~xn � ↵n+1~r n,

~r n+1 = ~r n � ↵n+1~zn+1,

• Si ~r n+1 = 0 STOP.
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Résultat

Théorème

Si A est une matrice symétrique définie positive, alors la méthode du gradient converge.

Problèmes:

1. Convergence lente

2. Convergence perdue à cause des erreurs d’arrondis.
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Méthode du gradient conjugué

~wn+1 = �~r n + �n~wn,

Rationale:

• Correction de la direction �~r n.

• �n calculé afin de minimiser l’erreur entre ~x et ~xn+1

• Sans entrer dans les détails, on peut montrer

�n =
(~r n)T A~wn

(~wn)T A~wn .
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Algorithme

• Choisir ~x0 et calculer ~r0 = ~b � A~x0;

• Effectuer une itération avec la méthode du gradient:

~w1 = �~r0, ~z1 = A~w1, ↵1 =
(~r0)T ~w1

(~w1)T~z1
, ~x1 = ~x0 + ↵1~w1.

• Pour n = 0, 1, 2, . . ., calculer:

~r n = ~r n�1 � ↵n~zn,

�n =
(~r n)T~zn

(~wn)T~zn , ~wn+1 = �~r n + �n~wn,

~zn+1 = A~wn+1, ↵n+1 =
(~r n)T ~wn+1

(~wn+1)T~zn+1
,

~xn+1 = ~xn + ↵n+1~wn+1.

• Si ~r n = 0 STOP.
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Résultat

Théorème

Si A est une N ⇥ N matrice symétrique définie positive, alors la méthode du gradient

conjugué fournit la solution ~x en au plus N itérations. Ainsi il existe n  N tel que ~r n = 0.
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