Analyse numérique

Résolution de systémes linéaires
Méthodes directes
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Systeme linéaire

Systeme de N équations a N inconnues X1, Xo, ..., Xy :
ay Xy + apXe + -+ ainxy - = by,
a1X1 + agXo + -+ oNXN = bo,

[ an1X1 + anaXe + -+ annXn = by.
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Définition du probleme

AX = b.
avec
a1 &2 - an by X1
A 3.21 3.22 005 aZ'N | B tfz ’ g Xo
ani anz - ann by XN

Le probleme admet une solution si A est inversible!
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Rappels : matrices
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Matrices triangulaires

Définition

La matrice A est triangulaire supérieure (respectivement triangulaire inférieure) si a; = 0
pour i, jtelque 1 <j< i< N{(resp. 1 <i<j<N).

Définition

Si A est une matrice triangulaire supérieure (resp. triangulaire inférieure), le systeme
linéaire est un systéme triangulaire supérieur (resp. triangulaire inférieur).
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Résolution d’'un systeme triangulaire

Supposons un instant que la matrice A soit triangulaire supérieure. J

N
det A= H aj #0 si Aestsupposée réguliere

i=1
Donc on peut supposer:

a;j#0, Vi=1,...,N.

(Dans certains livres on suppose méme g; =1,i=1,2,...,N.)
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Algorithme

On calcule successivement les inconnues
XNy XN=15 -+, X]. En effet :

1
XN = —bpn
anN

etpouri=N-1,N-2...,3,2,1:

1 N
Xi = ; b,' — Z a,'ij
ii .
J=i+1

Comment transformer un systéme linéaire AX = b en un systéme linéaire triangulaire
équivalent? La méthode d’élimination de Gauss.
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Méthode d’élimination de Gauss

Exemple avec N = 3
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Algorithme (1)

Premiére étape Diviser la premiére équation du systéme par a1 = 4 (premier pivot) :

X1 +2Xx0+3x3 = 1
31 +8x% +13x3 = 5
2x1+9x +18x3 = 11
Soustraire 3x la premiére équation a la deuxiéme équation, et 2x fois la premiére
équation a la troisieme équation:
Xi+2x +3x3 = 1
2X2 —+ 4X3 = 2
5% +12x3 = 9
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Algorithme (2)

Deuxiéme étape Diviser la premiere équation du systéme par 2 (deuxieme pivot) :

Xi+2x+3x3 = 1
Xo+2x3 = 1
5% +12x3 = 9

Soustraire 5x la deuxiéme équation a la troisieme équation:

Xy +2x +3x3 = 1
Xo + 2X3 = 1
2X3 = 4
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Algorithme (3)

Derniére étape Diviser la troisieme équation du systéme par 2 (troisieme pivot) :

Xi+2x+3x3 = 1
Xo+2x3 = 1
X3 = 2
Systéme triangulaire équivalent!
Résoudre dans l'ordre inverse:
X3:2, X2:—3, X1:1.
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Algorithme général (i-eme étape) (1)

Soient A1) la matrice et b)) le second membre obtenus avant la i-iéme étape de

I’élimination.

Alexandre Caboussat

Analyse numérique

)

I

)

agf

i
4
]

a/('il)
ay)

i

13/38



Algorithme général (i-eme étape) (2)

(AD, B0Y —y (AN i)

Normalisation j-ieme ligne:

(7) ()

aj b
= i tiv2, N et BITD =T
if a(l) a')

i i

Elimination : Soustraire a{) x la i-iéme ligne de la k-ieme ligne (de A®) et b{"):

a5(3+1) - afq) _ a%) X a(j:+1)’ j=i+1,it2,... N et b/((i+1) _ bl((i) B a%) y b/(iH)
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Remarque (importante!)

Apés la i-eme étape, les nombres af(}), i+1<k,j<N,ne sont plus utiles. On peut donc
économiser de la place mémoire en écrivant :

3j

aj = —, j=i+1,i+2,....N,
aji

(idem pour les autres relations)
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Algorithme d’élimination de Gauss

entrées : aij, 1 <i,j < Neth;, 1<j<N
représentant la matrice A et le second membre b
du systéme linéaire originel
sorties : a;j, 1 <i<j< Nethj, 1<j<N
représentant la partie surdiagonale
du systéme triangulaire supérieur

et le nouveau second membre b

Algorithme Commentaires

Faires=1a N =1 Elimination de Pinconnue z;

pi=1/a; Tnverse du i-iéme pivot
Faire j=i+1a N

Division de la i-iéme ligne par le i-iéme pivot

aij =P X aij (termes surdiagonaux uniquement)
bi:=pxbi Division de b; par le i-iéme pivot
Farek=i+1a N Elimination dans la k-iéme équation
Faire j =i+ 1a N Soustraction de ag; fois la
Akj 7= Akj — @i X Gij nouvelle i-ieme ligne a la k-iéme ligne
by = b, — ags X bs Soustraction de ay; fois b; & by
pi=1/ann Inverse du N-idme pivot
by :=pxby Division de by par le N-iéme pivot
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Systemes mal conditionnés

{4.218613X1 + 6.327917x, = 10.546530

3.141592x; + 4.712390x 7.853982

Nous vérifions aisément que ce systéme est régulier (déterminant de A non nul) et que la
solution est donnée par x; = x» = 1. Considérons maintenant un systéme d’équations
voisin:

4218611 x4 + 6.327917 x», = 10.546530

3.141594 xy + 4.712390 x, = 7.853980

Nous vérifions encore que ce systeme est régulier, mais cette fois la solution est donnée
par x; = —5, et xo = +5.
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Interprétation

Le systeme est formé de deux équations qui, dans le plan Ox;, xo, décrivent deux droites

presque paralléles. Si on perturbe un tout petit peu deux droites presque paralléles, alors
le point d’intersection est fortement modifié !

Résoudre un probléme mal conditionné avec un ordinateur peut étre une affaire délicate
si I'ordinateur calcule avec trop peu de chiffres significatifs.
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Décomposition LU

Théoréeme

Soit Aune N x N matrice dont toutes les sous-matrices principales sont régulieres, alors
A=LU

ou L est une matrice triangulaire inférieure et U est une matrice triangulaire supérieure
avec des valeurs 1 dans sa diagonale.

La décomposition est unique.
La matrice U est celle obtenue par I'algorithme d’élimination de Gauss.
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Construction de I'algorithme : exemple

Soit une matrice A composée de 3 lignes et 3 colonnes.

ayy ap as v 0 O 1 U2 U3
A1 ap a3 = |l21 lp O 0 1 3|
a3y as2 ass l31 l3p (33 o 0 1

-~ ~~

A L U
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Algorithme de décomposition LU

Alexandre Caboussat

entrées : a;;, 1 <i,j < N sont les coefficients de la matrice A

sorties : a;;, 1 < j <i < N sont les coefficients de la matrice L

et a;j, 1 <i < j < N sont les coefficients surdiagonaux de la matrice U

Algorithme

Commentaires

ay; = ayi/an

Fairei =2a N

Faire k=2a N -1
k=1

gk = Gk — 3 Qgj * gk
=1
Fairei=k+1aN
k=1
ik = i — Y Qij * Ak
=1
1 k=1
ag; ‘= (a;,., - Z Afj * Clji)
agy; j=1
N-1

YN = 3L aNj * aiN

Construction de la premiére ligne de U

(la 1% col. de L est la 1 col. de A)

Colonnes de L et lignes de U

Construction du pivot ¢y

Construction de la k-iéme colonne de L
Construction de la k-iéme ligne de U

Construction du pivot ¢y
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Nombre d’opérations

Comme I'algorithme d’élimination de Gauss, le nombre d’opérations de I'algorithme de
décomposition LU se comporte comme N° lorsque N est grand. l
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Plusieurs systemes linéaires?

Nous voulons résoudre:
AXO =pO =12 ... m,

ou, par exemple b(® dépend de x (¢~ 1.
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Une N x N matrice A est dite symétrique définie positive si :
i) A= AT (Aest symétrique),
i) yTAy > 0 pour tout N-vecteur y,
i) yTAy = 0 si et seulement si y = 0.

Si Aestune N x N matrice symétrique définie positive, alors elle est réguliere. J
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Résultat

Si Aestune N x N matrice symétrique définie positive, alors toutes ses sous-matrices
principales sont symétriques définies positives et sont donc réguliéres.

Démontration:
Soit Ak la sous-matrice principale d’ordre k de A (Ax est symétrique). En considérant:

- [ Z1] }kpremiéres composantes
| 0| }(N— k)composantes nulles,

On a
ZTAZ =y Ay.

On déduit que Ax est symétrique définie positive.
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Théoreme

Théoréme de Cholesky

Si A est une matrice symétrique définie positive, il existe une et une seule matrice
triangulaire inférieure a valeurs diagonales positives notée L telle que

A=LLT.
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Construction de I'algorithme : exemple

Soit une matrice A composée de 3 lignes et 3 colonnes.

ain a2 as ¢tvv 0 0 b1 Loy L34
o1 ax a3 = by ln O 0 lxn [l3].
az1 azp ass l31 fl3p [l33 0 0 /a3

-~ ~~

A L LT
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Algorithme de Cholesky

entrées : (a;;)1<j<i<n représentant la partie triangulaire inférieure de A;
(A est symétrique définie positive)
sorties : (ai;)1<j<i<n représentant L qui satisfait A = LLT

Algorithme

Commentaires

a11 = /011
Fairei=2a N
ai1 = ai1/a1

Faire k=2a N —1

k—1 2 1/2
agk = (akk - a‘kj)

Fairei=k+1a N

Jj=1

N=l ) \1/2
GNN = (aNN -2 a’Nj)
1

1 k-1
ik = 7(aik = D Qij * agj
kk

)

Construction de #£11

Construction de la
premiére colonne de L

Parcours des colonnes de L

Construction de £y,

Construction de la k-iéme col. de L

Construction de £ypn
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Soit Aune N x N matrice de coefficients a;, 1 < /,j < N et soit £ un entier positif inférieur

a N. On dira que A est une matrice de bande de demi-largeur ¢ si on a a;; = 0 pour tout
i,jsatisfaisant 1 < i j< Net|i—j|>/.

La décomposition LU (ou LL") de A donne lieu & des matrices triangulaires qui sont aussi

de bande de demi-largeur ¢. Le nombre d’opérations pour faire la décomposition LU ou
LLT est de I'ordre de N¢? lorsque N est grand.
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Exemple (classique)

S -
1 2
1 2 1
o -
e d2
L =
an—1
i en—1 an|
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Exemple (classique) (2)

ads
&

a>

dn
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Exemple (classique) (3)

Dans ce cas I'algorithme de décomposition LLT de A se met sous la forme suivante :

dy =2
Fairej=1aN -1
ej::—1/dj
dj+1 ::‘/2*61-2.
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Application: Méthode des moindres carrés

Probleme

Soit A une matrice M x N matrice avec M > N, et b un vecteur de taille M. On cherche a
résoudre: .
AX=0b

e Plus d’équations (M équations) que d’inconnues (N inconnues)
e Systeme surdéterminé (certaines fois sans solutions)
Trouver un N-vecteur X tel que pour tout N-vecteur y on ait :

|AX — b|| < ||Ay — b]|.

On dira dans ce cas que I'on cherche une solution de AX = b au sens des moindres
carrés.
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Théoreme

Supposons que A soit une M x N matrice (M > N) de rang N. Alors il existe un et un seul
vecteur X tel que B .
|IAX — bl| < |Ay — bl|, Vy.

De plus, X est solution de -
ATAX = ATb.
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Démonstration
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