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Système linéaire

Système de N équations à N inconnues x1, x2, . . . , xN :

8
>>>>>>><

>>>>>>>:

a11x1 + a12x2 + · · ·+ a1NxN = b1,

a21x1 + a22x2 + · · ·+ a2NxN = b2,

...

aN1x1 + aN2x2 + · · ·+ aNNxN = bN .
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Définition du problème

A~x = ~b.

avec

A =

2

6664

a11 a12 · · · a1N

a21 a22 · · · a2N

...
...

...

aN1 aN2 · · · aNN

3

7775
, ~b =

2

6664

b1

b2

...

bN

3

7775
, ~x =

2

6664

x1

x2

...

xN

3

7775
.

Le problème admet une solution si A est inversible!
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Rappels : matrices
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Matrices triangulaires

Définition

La matrice A est triangulaire supérieure (respectivement triangulaire inférieure) si aij = 0

pour i , j tel que 1  j < i  N (resp. 1  i < j  N).

Définition

Si A est une matrice triangulaire supérieure (resp. triangulaire inférieure), le système

linéaire est un système triangulaire supérieur (resp. triangulaire inférieur).
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Résolution d’un système triangulaire

Supposons un instant que la matrice A soit triangulaire supérieure.

det A =
NY

i=1

aii 6= 0 si A est supposée régulière

Donc on peut supposer:

aii 6= 0, 8i = 1, . . . ,N.

(Dans certains livres on suppose même aii = 1, i = 1, 2, . . . ,N.)
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Algorithme

On calcule successivement les inconnues

xN , xN�1, . . . , x1. En effet :

xN =
1

aNN

bN

et pour i = N � 1,N � 2, . . . , 3, 2, 1 :

xi =
1

aii

0

@bi �
NX

j=i+1

aijxj

1

A

Comment transformer un système linéaire A~x = ~b en un système linéaire triangulaire

équivalent? La méthode d’élimination de Gauss.
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Méthode d’élimination de Gauss

Exemple avec N = 3

A =

2

4
4 8 12

3 8 13

2 9 18

3

5 , ~b =

2

4
4

5

11

3

5 .

Le système A~x = ~b devient dans ce cas :

8
>><

>>:

4x1 + 8x2 + 12x3 = 4

3x1 + 8x2 + 13x3 = 5

2x1 + 9x2 + 18x3 = 11
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Algorithme (1)

Première étape Diviser la première équation du système par a11 = 4 (premier pivot) :

8
>><

>>:

x1 + 2x2 + 3x3 = 1

3x1 + 8x2 + 13x3 = 5

2x1 + 9x2 + 18x3 = 11

Soustraire 3⇥ la première équation à la deuxième équation, et 2⇥ fois la première

équation à la troisième équation:

8
>><

>>:

x1 + 2x2 + 3x3 = 1

2x2 + 4x3 = 2

5x2 + 12x3 = 9
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Algorithme (2)

Deuxième étape Diviser la première équation du système par 2 (deuxième pivot) :

8
>><

>>:

x1 + 2x2 + 3x3 = 1

x2 + 2x3 = 1

5x2 + 12x3 = 9

Soustraire 5⇥ la deuxième équation à la troisième équation:

8
>><

>>:

x1 + 2x2 + 3x3 = 1

x2 + 2x3 = 1

2x3 = 4
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Algorithme (3)

Dernière étape Diviser la troisième équation du système par 2 (troisième pivot) :

8
>><

>>:

x1 + 2x2 + 3x3 = 1

x2 + 2x3 = 1

x3 = 2

Système triangulaire équivalent!

Résoudre dans l’ordre inverse:

x3 = 2, x2 = �3, x1 = 1.

Alexandre Caboussat Analyse numérique 12 / 38



Algorithme général (i-ème étape) (1)

Soient A(i) la matrice et ~b(i) le second membre obtenus avant la i-ième étape de

l’élimination.

A
(i) =

2

66666666666666664

1 a
(i)
12

a
(i)
13

a
(i)
14

· · · a
(i)
1i

· · · a
(i)
1N

0 1 a
(i)
23

a
(i)
24

· · · a
(i)
2i

· · · a
(i)
2N

0 0 1 a
(i)
34

· · · a
(i)
3i

· · · a
(i)
3N

0 0 0 1 · · · a
(i)
4i

· · · a
(i)
4N

. . .
...

...

1

0 a
(i)
ii

· · · a
(i)
iN

...
...

a
(i)
Ni

· · · a
(i)
NN

3

77777777777777775

.
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Algorithme général (i-ème étape) (2)

(A(i),~b(i)) 7�! (A(i+1),~b(i+1))

Normalisation i-ième ligne:

a
(i+1)
ij

=
a
(i)
ij

a
(i)
ii

, j = i + 1, i + 2, . . . ,N et b
(i+1)
i

=
b
(i)
i

a
(i)
ii

Elimination : Soustraire a
(i)
ki
⇥ la i-ième ligne de la k -ième ligne (de A(i) et b

(i)
k

):

a
(i+1)
kj

= a
(i)
kj

� a
(i)
ki

⇥ a
(i+1)
ij

, j = i + 1, i + 2, . . . ,N et b
(i+1)
k

= b
(i)
k

� a
(i)
ki

⇥ b
(i+1)
i
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Remarque (importante!)

Apès la i-ème étape, les nombres a
(i)
kj

, i + 1  k , j  N, ne sont plus utiles. On peut donc

économiser de la place mémoire en écrivant :

aij :=
aij

aii

, j = i + 1, i + 2, . . . ,N,

(idem pour les autres relations)
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Algorithme d’élimination de Gauss
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Systèmes mal conditionnés

Exemple
⇢

4.218613x1 + 6.327917x2 = 10.546530

3.141592x1 + 4.712390x2 = 7.853982

Nous vérifions aisément que ce système est régulier (déterminant de A non nul) et que la

solution est donnée par x1 = x2 = 1. Considérons maintenant un système d’équations

voisin: ⇢
4.218611 x1 + 6.327917 x2 = 10.546530

3.141594 x1 + 4.712390 x2 = 7.853980

Nous vérifions encore que ce système est régulier, mais cette fois la solution est donnée

par x1 = �5, et x2 = +5.
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Interprétation

Le système est formé de deux équations qui, dans le plan Ox1, x2, décrivent deux droites

presque parallèles. Si on perturbe un tout petit peu deux droites presque parallèles, alors

le point d’intersection est fortement modifié !

Résoudre un problème mal conditionné avec un ordinateur peut être une affaire délicate

si l’ordinateur calcule avec trop peu de chiffres significatifs.
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Décomposition LU

Théorème

Soit A une N ⇥ N matrice dont toutes les sous-matrices principales sont régulières, alors

A = LU

où L est une matrice triangulaire inférieure et U est une matrice triangulaire supérieure

avec des valeurs 1 dans sa diagonale.

La décomposition est unique.

La matrice U est celle obtenue par l’algorithme d’élimination de Gauss.
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Construction de l’algorithme : exemple

Soit une matrice A composée de 3 lignes et 3 colonnes.

2

4
a11 a12 a13

a21 a22 a23

a31 a32 a33

3

5

| {z }
A

=

2

4
`11 0 0

`21 `22 0

`31 `32 `33

3

5

| {z }
L

2

4
1 u12 u13

0 1 u23

0 0 1

3

5

| {z }
U

.
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Algorithme de décomposition LU
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Nombre d’opérations

Comme l’algorithme d’élimination de Gauss, le nombre d’opérations de l’algorithme de

décomposition LU se comporte comme N3 lorsque N est grand.
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Plusieurs systèmes linéaires?

Nous voulons résoudre:

A~x (`) = ~b (`), ` = 1, 2, . . . ,m,

où, par exemple ~b (`) dépend de ~x (`�1).

A = LU

Pour ` = 1, 2, . . . ,m:

L~y (`) = ~b(`),

U~x (`) = ~y (`).
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Définition

Une N ⇥ N matrice A est dite symétrique définie positive si :

i) A = AT (A est symétrique),

ii) ~yT A~y � 0 pour tout N-vecteur ~y ,

iii) ~yT A~y = 0 si et seulement si ~y = 0.

Si A est une N ⇥ N matrice symétrique définie positive, alors elle est régulière.
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Résultat

Si A est une N ⇥ N matrice symétrique définie positive, alors toutes ses sous-matrices

principales sont symétriques définies positives et sont donc régulières.

Démontration:

Soit Ak la sous-matrice principale d’ordre k de A (Ak est symétrique). En considérant:

~y =


~z
0

�
} k premières composantes

} (N � k) composantes nulles,

On a

~zT
Ak

~z = ~yT
A~y .

On déduit que Ak est symétrique définie positive.
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Théorème

Théorème de Cholesky

Si A est une matrice symétrique définie positive, il existe une et une seule matrice

triangulaire inférieure à valeurs diagonales positives notée L telle que

A = LL
T .
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Construction de l’algorithme : exemple

Soit une matrice A composée de 3 lignes et 3 colonnes.

2

4
a11 a12 a13

a21 a22 a23

a31 a32 a33

3

5

| {z }
A

=

2

4
`11 0 0

`21 `22 0

`31 `32 `33

3

5

| {z }
L

2

4
`11 `21 `31

0 `22 `32

0 0 `33

3

5

| {z }
LT

.
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Algorithme de Cholesky
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Définition

Soit A une N ⇥ N matrice de coefficients aij , 1  i , j  N et soit ` un entier positif inférieur

à N. On dira que A est une matrice de bande de demi-largeur ` si on a aij = 0 pour tout

i , j satisfaisant 1  i , j  N et | i � j |� `.

Résultat

La décomposition LU (ou LLT ) de A donne lieu à des matrices triangulaires qui sont aussi

de bande de demi-largeur `. Le nombre d’opérations pour faire la décomposition LU ou

LLT est de l’ordre de N`2 lorsque N est grand.
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A =

2

666666666666666664

⇤ ⇤ ⇤ ⇤ ⇤ 0 0 0 0 0 0

⇤ ⇤ ⇤ ⇤ ⇤ ⇤ 0 0 0 0 0

⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ 0 0 0 0

⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ 0 0 0

⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ 0 0

0 ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ 0

0 0 ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
0 0 0 ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
0 0 0 0 ⇤ ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
0 0 0 0 0 ⇤ ⇤ ⇤ ⇤ ⇤ ⇤
0 0 0 0 0 0 ⇤ ⇤ ⇤ ⇤ ⇤

3

777777777777777775
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Exemple (classique)

A =

2

666664

2 �1

�1 2 �1

. . .
. . .

. . .

�1 2 �1

�1 2

3

777775
.

L =

2

6666664

d1

e1 d2

. . .
. . .

. . . dN�1

eN�1 dN

3

7777775
.
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Exemple (classique) (2)

L =

2

6666664

d1

e1 d2

. . .
. . .

. . . dN�1

eN�1 dN

3

7777775
.
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Exemple (classique) (3)

Dans ce cas l’algorithme de décomposition LLT de A se met sous la forme suivante :

d1 =
p

22

64
Faire j = 1 à N � 1

ej := �1/dj

dj+1 :=
q

2 � e2

j
.
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Application: Méthode des moindres carrés

Problème

Soit A une matrice M ⇥ N matrice avec M > N, et ~b un vecteur de taille M. On cherche à

résoudre:

A~x = ~b

• Plus d’équations (M équations) que d’inconnues (N inconnues)

• Système surdéterminé (certaines fois sans solutions)

Trouver un N-vecteur ~x tel que pour tout N-vecteur ~y on ait :

kA~x � ~bk  kA~y � ~bk.

On dira dans ce cas que l’on cherche une solution de A~x = ~b au sens des moindres

carrés.
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Théorème

Supposons que A soit une M ⇥N matrice (M � N) de rang N. Alors il existe un et un seul

vecteur ~x tel que

kA~x � ~bk  kA~y � ~bk, 8~y .

De plus, ~x est solution de

A
T

A~x = A
T~b.
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Démonstration
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