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Problème à résoudre

Supposons que l’on veuille chercher un polynôme p de degré n � 0 qui, pour des valeurs
t0, t1, t2, . . ., tn distinctes données, prenne les valeurs p0, p1, p2, . . ., pn :

p(tj) = pj pour 0  j  n.

Solution:

p(t) = a0 + a1t + a2t2 + · · ·+ antn

où a0, a1, a2, . . ., an sont des coefficients à déterminer.
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) système de n + 1 relations pour n + 1 inconnues:

p(tj) = a0 + a1tj + a2t2
j + a3t3

j + · · ·+ antn
j = pj , 0  j  n.
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Définition
Nous dirons que T est la matrice de Vandermonde associée aux points t0, t1, t2, . . ., tn.

Problème à résoudre: un système linéaire

T~a = ~p

Pas facile! Donc il nous faut une meilleure méthode...
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Rappel: Matrice inversible
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Une meilleure approche

Problème
Trouver l’interpolant p(t) tel que

pk = 1 pour un k 2 {0, . . . , n} donné
pj = 0 j 6= k .

Solution:

'k (t) =
(t � t0)(t � t1) · · · (t � tk�1)(t � tk+1) · · · (t � tn)

(tk � t0)(tk � t1) · · · (tk � tk�1)(tk � tk+1) · · · (tk � tn)
.

(i) 'k est un polynôme de degré n,
(ii) 'k (tj) = 0 si j 6= k , 0  j  n,
(iii) 'k (tk ) = 1.
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Base de Pn

• Les polynômes '0, '1, '2, . . ., 'n sont linéairement indépendants.

En effet si ↵0, ↵1, ↵2, . . ., ↵n sont (n + 1) nombres réels tels que
Pn

j=0 ↵j'j(t) = 0,
8t 2 R, alors pour t = tk nous obtenons :

0 =
nX

j=0

↵j 'j(tk )| {z }
0 si j 6=k
1 si j=k

= ↵k ,

et par conséquent tous les ↵k , k = 0, 1, . . . , n sont identiquement nuls.
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Base de Pn

• Les polynômes '0, '1, '2, . . ., 'n forment aussi une base de Pn.

Pn est un espace vectoriel de dimension (n + 1) avec base canonique
1, t , t2, t3, . . . , tn. Comme '0,'1,'2, . . . ,'n sont des polynômes de degré n
linéairement indépendants, ils engendrent également Pn.
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Base de Lagrange

Définition
Nous dirons que '0,'1,'2, . . . ,'n est la base de Lagrange de Pn associée aux points
t0, t1, t2, . . . , tn.
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Exemple

Lorsque n = 2, t0 = �1, t1 = 0, t2 = 1, quelle est la base de Lagrange de P2 associée aux
points �1, 0 et 1?

Solution: La base est formée par les polynômes '0,'1,'2 définis par

'0(t) ⌘
(t � t1)(t � t2)
(t0 � t1)(t0 � t2)

=
1
2

t(t � 1) =
1
2

t2 � 1
2

t

'1(t) ⌘
(t � t0)(t � t2)
(t1 � t0)(t1 � t2)

= �(t + 1)(t � 1) = 1 � t2

'2(t) ⌘
(t � t0)(t � t1)
(t2 � t0)(t2 � t1)

=
1
2
(t + 1)t =

1
2

t2 +
1
2

t
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Interpolation de Lagrange

Problème
Chercher un polynôme p de degré n qui prenne des valeurs données p0, p1, p2, . . ., pn en
des points distincts donnés t0, t1, t2, . . ., tn.

Solution:

p(t) = p0'0(t) + p1'1(t) + · · ·+ pn'n(t) =
nX

j=0

pj'j(t).

En effet, on vérifie que

p 2 Pn, et p(tk ) =
nX

j=0

pj 'j(tk )| {z }
0 si j 6=k
1 si j=k

= pk
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Remarque

Il existe une solution explicite pour n’importe quelles valeurs p0, p1, . . . , pn.
+

Le système linéaire T~a = ~p admet toujours une solution.
+

La matrice de Vandermonde T est inversible.
+

La solution est unique!
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Exemple

Trouver un polynôme de degré 2 tel que

p(�1) = 8, p(0) = 3, p(1) = 6

Solution:

p(t) = 8'0(t) + 3'1(t) + 6'2(t)

p(t) = 8
✓

1
2

t2 � 1
2

t
◆
+ 3(1 � t2) + 6

✓
1
2

t2 +
1
2

t
◆

= 4t2 � t + 3.
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Interpolation d’une fonction continue

Soit une fonction f : R ! R continue donnée et soit t0, t1, t2, . . ., tn, (n + 1) points distincts
donnés. Nous voulons interpoler f par un polynôme p de degré n, i.e.

p(tj) = f (tj) pour 0  j  n.

Solution:

p(t) =
nX

j=0

f (tj)'j(t) 8t 2 R.

p est l’interpolant de f de degré n aux points t0, t1, t2, . . . , tn.
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Exemple

Soit f la fonction définie par f (t) = et . Trouver l’interpolant de f de degré 2 aux points �1,
0 et 1.

Solution:

p(t) = e�1'0(t) + e0'1(t) + e'2(t)

=
1
e

✓
1
2

t2 � 1
2

t
◆
+ (1 � t2) + e

✓
1
2

t2 +
1
2

t
◆

=

✓
1

2e
� 1 +

e
2

◆
t2 +

✓
e
2
� 1

2e

◆
t + 1.
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Quelle erreur?

Soit f : [a, b] ! R continue sur [a, b]. Soit n 2 N et tj = a + jh, j = 0, 1, 2, . . . , n,
h = (b � a)/n.

Soit pn l’interpolant de f de degré n aux points t0, t1, . . . , tn:

pn(t) =
nX

j=0

f (tj)'j(t),
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Théorème
Supposons que f soit (n + 1) fois continûment dérivable sur l’intervalle [a, b], et pn
l’interpolant de Lagrange; nous avons :

max
t2[a,b]

|f (t)� pn(t)| 
1

2(n + 1)

✓
b � a

n

◆(n+1)
max

t2[a,b]
|f (n+1)(t)|

où f (n+1)(t) = dn+1f (t)/dtn+1.
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Exemple de Runge

f (t) =
1

1 + 25t2 sur [�1,+1].

tj = �1 + 2j/n, j = 0, 1, . . ., n.
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Conclusions

• La fonction f (t) est infiniment dérivable mais |f (n)(1)| est très grand lorsque n
augmente.

• L’interpolant présente de grandes oscillations vers x = ±1.
• Pas un bon choix d’avoir des points t0, t1, . . . , tn équidistribués.
• Lorsque n devient grand:

• Instabilités possibles.
• Fonction f doit être régulière.

• Interpolation par intervalles
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Interpolation par intervalles

• f 2 C0([a, b]), x0 = a < x1 < x2 < x3 < . . . < xN = b
• Dans chaque intervalle [xi , xi+1]:

t0 = xi , tj = xi,j , 1  j  n � 1, tn = xi+1

où xi,j sont n � 1 points intérieurs équirépartis notés

xi,1 < xi,2 < xi,3 < . . . < xi,n�1.
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Interpolation par intervalles (2)

• Interpoler f aux points tj , 0  j  n, par un polynôme de degré n, pn,i .
• Définir h = max0iN�1 |xi+1 � xi |.
• Construire

fh : x 2 [a, b] �! fh(x) 2 R

telle que fh restreinte à [xi , xi+1] est égale à pn,i

fh est l’interpolant de degré n par intervalles de la fonction f .
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Théorème

Soit n 2 N, soit f : [a, b] ! R une fonction Cn+1([a, b]) et soit fh son interpolant de degré n
par intervalles.

Alors il existe une constante C (indépendante du choix des xi , 1  i  N � 1) telle que

max
x2[a,b]

|f (x)� fh(x)|  Chn+1.
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Démonstration (1)

(n = 1)

Alexandre Caboussat Analyse numérique 25 / 28



Démonstration (2)
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Démonstration (3)
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Interprétation

max
x2[a,b]

|f (x)� fh(x)| ! 0

lorsque h tend vers zéro.
max

x2[a,b]
|f (x)� fh(x)|  Chn+1.

En pratique, on prendra N grand et n petit (n = 1 ou 2 ou 3 ou 4).
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