
Analyse Numérique

Sémestre d’Autumne 2019

Prof. Fabio Nobile

2019

Introduction à Matlabr /Octave

1 Informations générales

Matlabr (MATrix LABoratory) est un logiciel commercial pour le calcul scientifique, qui comprend
un langage de programmation et une interface graphique. En particulier, le langage est orienté
vers les vecteurs et les listes de données; de plus, Matlabr est un langage interprété, c’est à dire
que les commandes sont traduites en language machine à l’exécution; il ne nécessite donc pas de
compilation. Toutes les informations concernant la distribution et l’installation de Matlabr sont
disponibles sur le site officiel (http://www.mathworks.com).

GNU Octave est un langage qui peut remplacer Matlabr . Dans les séance d’exercices, nous utilis-
erons Matlabr , mais les commandes sont presque entièrement compatibles avec Octave. Octave est
aussi un langage interprété; contrairement à Matlabr , Octave est un logiciel libre et gratuite, mais,
dans sa version de base, il presente seulement une interface en ligne de commande. Une interface
graphique est disponible séparément. Toutes les informations sur Octave sont disponibles sur le site
officiel http://www.gnu.org/software/octave/.

Pour ouvrir Matlabr , cliquez sur Start → Programmes → Matlab sous Windows, ou tapez matlab

dans un terminal sous Unix. Matlabr se présente avec un environnement interactif et un prompt
(généralement >>) dans lequel on peut introduire des commandes. Par exemple, pour quitter
Matlabr , tapez la commande:

>> quit

2 Aide en ligne

Matlabr propose une documentation complète en anglais. Vous avez également accès à une aide
sur différents sujets en tapant la commande:

>> help commande

L’aide affiche un descriptif de la commande, par exemple :

1

>> help sum
SUM Sum of elements.

S = SUM(X) is the sum of the elements of the vector X. If
X is a matrix, S is a row vector with the sum over each
column. For N−D arrays, SUM(X) operates along the first
non−singleton dimension.
If X is floating point, that is double or single, S is
accumulated natively, that is in the same class as X,
and S has the same class as X. If X is not floating point,
S is accumulated in double and S has class double.

S = SUM(X,DIM) sums along the dimension DIM.

S = SUM(X,'double') and S = SUM(X,DIM,'double') accumulate
S in double and S has class double, even if X is single.

S = SUM(X,'native') and S = SUM(X,DIM,'native') accumulate
S natively and S has the same class as X.

Examples:
If X = [0 1 2

3 4 5]

then sum(X,1) is [3 5 7] and sum(X,2) is [3
12];

If X = int8(1:20) then sum(X) accumulates in double and the
result is double(210) while sum(X,'native') accumulates in
int8, but overflows and saturates to int8(127).

See also prod, cumsum, diff, accumarray, isfloat.

La commande help est très utile. Habituez-vous à l’utiliser chaque fois que vous avez besoin
d’information sur la syntaxe et les paramètres d’entrée et sortie d’une commande.

3 Déclaration des variables

Matlabr permet de créer et d’initialiser des variables. Les déclarations suivent les règles suivantes:

a) toutes les variables sont des matrices;

b) les variables n’ont pas de type.

Exemples:

a = 5 variable scalaire (1× 1)

b = [4.4 −6.9] vecteur ligne (1× 2)

c = [−5; 2] vecteur colonne (2× 1)

2

d = [2 3; −1 7] matrice carrée (2× 2)

s = 'abc' châıne de caractères (1× 3)

t = 3+i variable scalaire complexe (1× 1)

Dans ces exemples, on a utilisé les opérateurs suivants:

a) séparateur de ligne: point-virgule ou return ;

b) séparateur de colonne: virgule ou espace blanc;

On a aussi utilisé l’unité imaginaire i, définie par i =
√
−1 (on peut utiliser de façon équivalente j

ou 1i). D’autres constantes fundamentales sont définies en Matlabr par

a) pi: le nombre π = 3.14159265 . . .

b) exp(1): le nombre e = 2.718281 . . .

Il faut noter que Matlabr affiche les nombres avec quatre chiffres après la virgule, tandis que la
représentation interne est faite avec 16 chiffres. Pour changer l’affichage des nombres en Matlabr ,
on utilise la commande format. Par exemple, si avant de taper >> pi (la variable pi est une
approximation de π), nous écrivons

format long nous obtiendrons 3.14159265358979;

format short nous obtiendrons 3.1416;

format long e nous obtiendrons 3.14159265358979e+00;

format short e nous obtiendrons 3.1416e+00.

4 Workspace

Matlabr permet de connâıtre plusieurs informations sur les variables déclarées. Tapez:

who pour afficher toutes les variables.

whos pour afficher toutes les variables avec indication sur leurs tailles.

size(A) pour afficher les dimensions de la matrice A.

length(b) pour afficher la longueur du vecteur b.

clear var pour effacer la variable var.

clear (ou clear all) pour effacer toutes les variables.

3

5 Opérations fondamentales

Matlabr peut effectuer plusieurs opérations entre matrices. Les opérations fondamentales peuvent
être partagées en deux catégories.

5.1 Opérations matricielles

Les opérations matricielles usuelles sont définies par +, −, *, ˆ, \

C = A + B est la somme matricielle, Cij = Aij +Bij

C = A * B est le produit matriciel, Cij =
∑

k AikBkj

C = A \ B est la division matricielle, C = A−1B

C = Aˆ3 est la troisième puissance matricielle (C = A*A*A)

Il faut remarquer que ces opérations sont bien définies seulement si les matrices ont des dimensions
cohérentes. Pour l’addition A+B, A et B doivent avoir la même taille; pour le produit A*B, le
nombre de colonnes de A et le nombre de lignes de B doivent être égaux; les opérations A\B et Aˆ3
demandent une matrice A carrée. Par exemple:

>> A = [1 2 3; 4 5 6]; B = [7 8 9; 10 11 12];
>> A + B
ans =

8 10 12
14 16 18

>> C = [13 14; 15 16; 17 18];
>> A + C
??? Error using ==> plus
Matrix dimensions must agree.

>> A * C
ans =

94 100
229 244

>> A * B
??? Error using ==> mtimes
Inner matrix dimensions must agree.

Notez que Matlabr renvoie un message d’erreur si les dimensions des matrices ne s’accordent pas
avec l’opération commandée. Apprenez à lire ces messages d’erreur! Pour plus d’informations sur
les messages d’erreur, voir Section 11.

5.2 Opérations élément par élément

Pour exécuter des opérations entre matrices élément par élément, il faut faire précéder l’opérateur
d’un point. Les opérateurs élément par élément sont donc .* ./ .ˆ et sont définis entre matrices

4

de même dimension ou entre un scalaire et une matrice

C = A .* B est le produit élément par élément, Cij = AijBij

C = A ./ B est la division élément par élément, Cij =
Aij

Bij

C = A.ˆ3 est la troisième puissance élément par élément, Cij = A3
ij

6 Manipulation des matrices

Après avoir défini la matrice A (par exemple une matrice carrée A de taille n), Matlabr permet les
opérations suivantes sur les sous-matrices de A.

6.1 Extraction de sous-matrices

A(2,3) extraction de l’élément A23. Attention: le premier valeur
d’une ligne/colonne/vecteur est indiqué par 1

A(:,5) extraction de la colonne [A15; . . . ;An5]

A(1:4,3) extraction de la sous-colonne [A13; . . . ;A43]

A(1,:) extraction de la ligne [A11, . . . , A1n]

diag(A) extraction de la diagonale [A11; . . . ;Ann]

6.2 Construction de matrices particulières

Matlabr permet, en plus, de définir des matrices particulières (une fois définis les entiers n, m et le
vecteur v).

A = eye(n) matrice identité n× n

A = diag(v) matrice diagonale avec v comme diagonale

A = diag(diag(B)) matrice diagonale, avec diagonale égale à celle de B

A = zeros(n,m) matrice de zéros avec n lignes et m colonnes

A = ones(n,m) matrice de un avec n lignes et m colonnes

A = rand(n,m) matrice aléatoire de nombres entre 0 et 1 avec
n lignes et m colonnes

x = debut:pas:fin vecteur ligne de points équidistribués
avec pas pas entre debut et fin

x = linspace(debut,fin,n) vecteur ligne de n points équidistribués
entre debut et fin

5

6.3 Fonctions matricielles

Soit A une matrice, Matlabr permet d’effectuer directement les opérations suivantes.

C = A' transposée de A, Cij = Aji. Si A est complexe, Cij = Aji

C = inv(A) inverse de A (matrice carrée), C = A−1

d = det(A) déterminant de A (matrice carrée)

r = rank(A) rang de A

nrm = norm(A) norme 2 de A

v = eig(A) valeurs propres de A (matrice carrée)

[V,D] = eig(A) V: matrice des vecteurs propres de A; D: matrice
diagonale avec les valeurs propres de A.

Soit A une matrice carrée de taille n et soit b un vecteur de taille n, alors le vecteur x, solution du
système linéaire Ax = b est défini par

>> x = inv(A) * b

Cette commande est théoriquement correcte, cependant, si on est intéressé seulement à la solution
x et pas à l’inverse inv(A), il est préférable d’utiliser un backslash

>> x = A \ b

Cette commande résout le système linéaire avec des algorithmes fiables et optimaux.

7 Boucles de contrôle

Matlabr offre, comme plusieurs autres langages, quelques boucles de contrôle. Ces commandes sont
spécialement utiles pour écrire des programmes Matlabr .

7.1 Boucle for

Si l’on veut exécuter des instructions pour chaque valeur

i = a, a+ 1, a+ 2, a+ 3, . . . , a+ n

d’une certaine variable i entre deux bornes assignées a et a+ n, on utilise for. Par exemple pour
calculer le produit scalaire ps entre deux vecteurs x et y de taille n, on pose a = 1 et on utilise:

>> n = length(x)
>> ps = 0;
>> for i = 1:n;
>> ps = ps + x(i)*y(i);
>> end

6

Cette boucle est équivalente au produit matriciel entre le vecteur transposé de x et le vecteur y, en
supposant que les facteurs soient deux vecteurs colonnes:

>> ps = x'*y;

Pour créer un vecteur dans une boucle, on peut faire:

>> % Creer un vecteur v = sqrt(range)
>> range = linspace(0,1,11);
>> v = []; % Defini un vecteur vide
>> for i = range

v = [v ; sqrt(i)]; % Ajoute l'element sqrt(i) a la suite du vecteur v
end

>> plot(range, v) % Pour faire un graphe

7.2 Boucle while

Si l’on veut exécuter plusieurs fois des instructions pendant qu’une expression logique est vraie, on
utilise while. Par exemple, le même calcul qu’on a considéré avec la boucle for peut être exécuté
avec

>> n = length(x)
>> ps = 0;
>> i = 0;
>> while (i < n);
>> i = i + 1;
>> ps = ps + x(i)*y(i);
>> end

7.3 Instruction conditionelle if

Si l’on veut exécuter des instructions seulement si une expression logique est vraie, on utilise if.
Par exemple, si l’on veut calculer la racine carrée d’une variable scalaire r seulement si r n’est pas
négatif:

>> if (r > = 0)
>> racine = sqrt(r);
>> end

On a plusieurs opérateurs logiques à disposition:

Opérateur Action logique

&& and
|| or
∼ not
== equal to

Taper par exemple help & pour une explication de la liste des opérateurs.

7

8 Scripts et fonctions

Matlabr permet l’exécution de listes de commandes sauvegardées dans un fichier. Les outils prin-
cipaux sont les script files et les fonctions.

8.1 Script files

Un script file est une suite de commandes Matlabr . Les noms des script files doivent avoir
l’extension “.m”. On peut aussi écrire des lignes de commentaires, que Matlabr n’exécutera pas.
Les lignes de commentaires sont introduites par %. Pour exécuter un script file tapez son nom, sans
extension, dans le prompt Matlabr .
Une bonne pratique est de commencer un script avec les trois commandes clc, close all,
clear all. Par exemple si le fichier test.m contient les commandes suivantes

clc
close all
clear all
a=0;
for i=1:5

a=a+iˆ2;
end
a

en tapant

>> test

on aura

ans =
55

8.2 Fonctions

Une fonction Matlabr est une suite de commandes qui nécessite un ou plusieurs input pour être
exécutée et qui renvoie un ou plusieurs output. On a déjà vu plusieurs fonctions; en effet, la plupart
des commandes introduites dans la Section 6 sont des fonctions. Par exemple, la fonction size
renvoie comme output les dimensions d’une matrice.

8.2.1 Utiliser les fonction

Supposons que la fonction helloworld utilise comme input une scalaire et un vecteur et donne
comme output trois variables. La syntaxe suivante permet d’appeler la fonction et de mémoriser
ses outputs dans des variables:

>> helloworld(3,[pi −5]); % aucun output est memorise'.
>> out=helloworld(3,[pi −5]); % memorise le premier output.
>> [out1, out2]=helloworld(3,[pi −5]); % memorise le premier et deuxieme outputs.
>> [out1, out2, out3]=helloworld(3,[pi −5]); % memorise le trois outputs.
>> [∼, ∼, out3]=helloworld(3,[pi −5]); % memorise le troisieme output seulement

8

8.2.2 Ecrire une fonction

On a deux façons pour écrire une fonction en Matlabr :

a) @-fonctions;

b) .m functions.

@-functions

On peut définir rapidement des fonctions simples (c’est-à-dire des fonctions qu’on peut écrire en
une ligne seulement) avec la commande @(parameter1, parameter2, ...).

Pour définir une fonction f qui dépend de la variable x, on écrit:

>> f = @(x) log(x) − 1;
>> f(1)
ans =

−1

Si f dépend de plusieurs variables, nous écrirons par exemple

>> f = @(x,p) log(x) − p;
>> f(1,1)
ans =

−1

.m-functions

Pour écrire des fonctions plus longues qu’un seule ligne, on écrit les commandes de la fonction dans
un .m file particulier, qui suit ces règles:

a) Le fichier doit commencer par:
function [output arguments] = nom fonction(input arguments)
Par exemple, l’en-tête d’une fonction pour la méthode de la dichotomie pourrait être:

function [zero,res,niter]=bisection(fun,a,b,tol,nmax,varargin)
%BISECTION Find function zeros.
% ZERO=BISECTION(FUN,A,B,TOL,NMAX) tries to find a zero ZERO
% of the continuous function FUN in the interval [A,B]
% using the bisection method.

.

.

. % istructions

.
zero = ...;
res = ...;
niter = ...;

.

. % istructions

.

.

return % fin du corps de la fonction

9

b) Le fichier doit avoir le même nom que la fonction (avec extension .m)

c) Les lignes de commentaires qui éventuellement suivent cet en-tête constituent le help de la
fonction.

d) Toutes les variables internes à la fonction sont locales (c’est-à-dire, on pourra pas accéder à
leur valuers dans la ligne de commande >>).

Par exemple, on peut écrire la fonction suivante dans le fichier my function.m

function f = my function(x);
f = x.ˆ3 − 2*sin(x) + 1;

qui on peut évaluer comme

>> my function(0)
ans =

1

Attention: pour pouvoir exécuter un script ou une fonction, il faut que le fichier .m correspondant
soit sauvegardé dans le répertoire de travail. Le répertoire de travail est normalement indiqué en
haut de la fenêtre principale de Matlabr .

9 Mesurer les temps d’exécution

Pour mesurer le temps pour l’exécution d’une suite des commandes/fonctions Matlabr , il faut
utiliser les commandes tic et toc.

>> tic
>> % des commandes ...
>> toc
Elapsed time is 0.000908 seconds

10 Graphisme 2D

La commande plot(a,b) reçoit comme input deux vecteurs a et b et crée un graphe dans un plan
cartésien en utilisant les valeurs de a comme abscisses et les valeurs de b comme ordonnées. Par
exemple, en tapant plot([1 2 7 8],[5 2 −1 pi]) on obtient le graphe en Figure 1-gauche.
Si les abscisses sont 1, 2, 3, . . ., on peut aussi utiliser la syntaxe plot([5 2 −1 pi]), qui est en
fait équivalent à plot([1 2 3 4],[5 2 −1 pi]) (voir Figure 1-droite).

Pour tracer le graphe de f1(x) = x3 + 1 − 2 sin(πx) et f2(x) = x3 + 1 (voir Figure 2), il faut donc
passer par les étapes suivantes:

a) Définir un vecteur de points dans l’intervalle donné:

>> x = −1:0.01:1;

10

1 2 3 4 5 6 7 8
−1

0

1

2

3

4

5

1 1.5 2 2.5 3 3.5 4
−1

0

1

2

3

4

5

Figure 1: Gauche: résultat de la commande plot([1 2 7 8],[5 2 −1 pi]). Droite: résultat
de la commande plot([5 2 −1 pi]). Observez que les abscisses sont différentes).

b) Créer des vecteurs contenants les évaluations des fonctions f1(x), f2(x) pour chaque composant
du vecteur x. Pour faire ça, on a deux possibilités: soit calculer immédiatement les vecteurs,
avec les commandes

>> y1 = x.ˆ3 + 1 − 2*sin(pi*x);
>> y2 = x.ˆ3 + 1;

soit définir d’abord les fonctions f1(x), f2(x):

>> f1 = @(x) x.ˆ3 + 1 − 2*sin(pi*x);
>> f2 = @(x) x.ˆ3 + 1;

et en suite évaluer les fonctions f1 et f2:

>> y1 = f1(x);
>> y2 = f2(x);

Observez qu’on a utilisé .ˆ (puissance élément par élément) et non pas ˆ (puissance ma-
tricielle), parce qu’il faut évaluer la fonction en chaque élément du vecteur x.

c) Tracer le graphe:

>> plot(x,f1(x),'b')
>> hold on
>> plot(x,f2(x),'g')
>> hold off

L’option 'b' ou 'g' permet de spécifier la couleur de la ligne (“blue” ou “green”). Voir
>> help plot pour une liste d’options. En utilisant les commandes hold on et hold off,
tous les graphes tracés entre les deux commandes sont superposés au graphe précédent. Ceci
permet de visualiser plusieurs fonctions dans la même fenêtre.

11

−1 −0.5 0 0.5 1
−1

0

1

2

3

x

f(
x)

graphs des fonctions f
1
 et f

2

f1
f2

Figure 2: Graphes des fonctions f1(x) et f2(x)

Il y a plein d’autres options graphiques en Matlabr . Voici une liste des commandes qui permettent
d’avoir aussi une grille de repère (grid), un descriptif des axes (xlabel et ylabel), une légende
(en spécifiant le nom de chaque ligne avec l’option 'DisplayName' de la commande plot, et util-
isant après la commande legend show) ainsi que un titre (title) et de spécifier aussi l’épaisseur
des lignes du graphe ('LineWidth',2):

>> figure(1)
>> axes('fontsize',16)
>> plot(x,f1(x),'b','LineWidth',2,'DisplayName','f1')
>> hold on
>> plot(x,f2(x),'g','LineWidth',2,'DisplayName','f2')
>> grid on
>> xlabel('x')
>> ylabel('f(x)')
>> legend show
>> title('graphes des fonctions f 1 et f 2')

cette commande ouvre la fenêtre 1 avec le graphe. Le résultat de ces commandes est représenté
dans la Figure 2. Pour plus de détails sur la fonction plot tapez >> help plot.

Matlabr donne aussi la possibilité de créer avec simplicité des graphes en échelle logarithmique. On
a trois possibilités (voir Figure 3):

a) semilogx(x,y) trace un graphe dont l’échelle horizontale est logarithmique tandis que
l’échelle verticale est lineaire. Cette fonction est idéale pour dessiner le graphe de données
ou fonctions qui s’étendent sur des grands intervalles de x. Les valeurs de x peuvent être
seulement positives (car on en prend le logarithme). En particulier, le graphe de la fonction
f(x) = log(x) est une lignes droite dans un graphe semilogx.

b) semilogy(x,y) trace un graphe dont l’échelle horizontale est linéaire tandis que l’échelle
verticale est logarithmique. Cette fonction est idéale pour dessiner le graphe de données ou
fonctions qui ont des grandes variations sur des petits intervalles de x. Les valeurs de y peuvent
être seulement positives. En particulier, les graphes des fonctions f(x) = ekx, k = 1, 2, 3 . . .
sont lignes droites à pente 1, 2, 3 . . . dans un graphe semilogy.

c) loglog(x,f1(x)) trace un graphe dont les deux échelles horizontales et verticales sont

12

0 2 4 6 8 10

−2

0

2

4

6

8

10

y=log(x)

y=x

y=x
2
+1

y=e
x

y=e
2x

10
−1

10
0

10
1

−2

0

2

4

6

8

10

y=log(x)

y=x

y=x
2
+1

y=e
x

y=e
2x

0 2 4 6 8 10
10

−1

10
0

10
1

10
2

10
3

y=log(x)

y=x

y=x
2
+1

y=e
x

y=e
2x

10
−1

10
0

10
1

10
−1

10
0

10
1

10
2

10
3

y=log(x)

y=x

y=x
2
+1

y=e
x

y=e
2x

Figure 3: Graphiques en échelles linéaires (en haut à gauche), semilogx (en haut à droite),
semilogy (en bas à gauche), loglog (en bas à droite) des fonctions y = log(x), y = x, y = x2, y =
ex, y = e2x

13

logarithmiques. Les valeurs de x et de y peuvent être seulement positives. Les graphes
des fonctions f(x) = xk, k = 1, 2, 3 . . . sont lignes droites à pente 1, 2, 3 . . . dans un graphe
loglog. En conséquence, cette fonction est idéale pour reconnâıtre ce type de relation entre
deux quantités.

11 Apprendre à lire les messages d’erreur

Comme déjà dit à la fin de la Section 5.1, chaque fois qu’on saisit une commande qui contient une
erreur de syntaxe, Matlabr s’arrête et donne un message d’erreur. Ces messages donnent souvent
des informations très claires sur l’erreur passé, et donc sur la correction des erreurs. Les erreurs les
plus communes sont:

a) Undefined function or variable 'b': on a essayé d’extraire la valeur d’une variable
qui n’existe pas

>> clear all
>> b

b) Index exceeds matrix dimensions: on a essayé d’extraire une valeur d’une matrice,
mais hors de la taille de la matrice.

>> a=[1 2 3]
>> a(4)

c) Subscript indices must either be real positive integers or logicals: on
a essayé d’extraire une entreée d’une matrice en utilisant un indice qui n’est pas un entier
supérieur ou égal à 1 (par exemple, 0 ou une valeur réelle):

>> a=[1 2 3]
>> b=3.2;
>> a(0)
>> a(1.5)
>> a(b)

d) Error using +
Matrix dimensions must agree.

On a essayé de additioner deux matrices de dimensions non cohérentes:

>> a=[1 2]
>> b=[3; 4]
>> a+b

e) Error using *

Inner matrix dimensions must agree.

On a essayé de multiplier deux matrices de dimensions non cohérentes. On a peut-être oublié
le caractère “.” qui déclare l’opération élément-par-élément?

14

>> a=[1 5 5]
>> b=[3 2 6]
>> a*b

f) Error using ˆ

Inputs must be a scalar and a square matrix.

On a essayé de calculer la puissance d’une matrice non carrée. On a peut-être oublié le
caractère “.” qui déclare l’operation élément-par-élément?

>> [1 2; 3 4; 4 5]ˆ2

g) Undefined function 'helloworld' for input arguments of type 'double'.
La fonction helloworld n’existe pas, ou elle n’est pas dans le répertoire de travail :

>> helloworld(4)

h) Error using plot

Vectors must be the same lengths.

Les vecteurs que l’on veut utiliser comme abscisse et ordonnée ont des longeurs différentes.

>> plot([1 2 3],[4 5])

i) Error: Unexpected MATLAB operator.

Matlabr n’arrive pas à interpréter la commande que l’on a saisi. Probablement il s’agit d’une
faute de frappe. Une ligne verticale vous indiquera la position de l’erreur!

>> a=a+*5
a=a+*5
|

Error: Unexpected MATLAB operator.

j) Error using plot

Conversion to double from function handle is not possible.

On veut tracer le graphe d’une fonction, définie par @, mais on a oublié d’évaluer la fonction:

>> f=@(t) t.ˆ2;
>> x=1:10;
>> plot(x,f) % au lieu de plot(x,f(x))

15

2 4 6 8 10 12
6

7

8

9

10

11

12

x

y

point

polynome

Figure 4: Données et polynôme d’interpolation

12 Polynômes en Matlabr

Considérons un polynôme de degré n:

f(x) = anx
n + an−1x

n−1 + . . . + a1x + a0.

Matlabr représente les polynômes de degré n sous la forme d’un vecteur p = [an, an−1, . . . , a0] de
taille n + 1 qui contient les coefficients en ordre décroissant par rapport au degré associé. Par
exemple, le vecteur associé au polynôme f(x) = 3x3 − 4x2 + x est

>> p = [3, −4, 1, 0];

Pour évaluer ce polynôme, on utilise la commande polyval:

>> x = 0:.1:1;
>> y = polyval(p, x);

Dans ce cas, les éléments du vecteur y sont les valeurs du polynôme calculées pour chaque élément
du vecteur x.
Pour obtenir le vecteur associé au polynôme de degré n approximant un jeu de données, on utilise
polyfit. Si la taille des données est plus grande que n+1, on a le polynôme approximant au sens
des moindres carrés; si elle est égale à n+1, on a le polynôme interpolant. Par exemple, si on veut
calculer le polynôme de degré 8 qui approche les données du vecteur y (au sens des moindre carrés)
et en tracer le graphe, il faut utiliser le script suivant;

clc
clear all
close all

x = [1 2 3 4 5 6 7 8 9 10 11 12];
y = [8 7.5 7.5 7.5 7.6 7.8 8 10 8 7.5 7.5 7.7];

p = polyfit(x, y, 8); % Calculons le polynome interpolant (degre=8)

16

x int = x(1):0.01:x(end)
y int = polyval(p, x int)

figure(1)
axes('fontsize',16)
plot(x, y, 'or', x int, y int, 'b', 'linewidth', 2);
xlabel('x')
ylabel('y')
legend('point','polynome')
axis([1 12 6 12]);

17

