(il

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Analyse Numérique
Sémestre d’Autumne 2019

Prof. Fabio Nobile

2019

Introduction & Matlab® /Octave

1 Informations générales

Matlab® (MATrix LABoratory) est un logiciel commercial pour le calcul scientifique, qui comprend
un langage de programmation et une interface graphique. En particulier, le langage est orienté
vers les vecteurs et les listes de données; de plus, Matlab® est un langage interprété, c’est a dire
que les commandes sont traduites en language machine a ’exécution; il ne nécessite donc pas de
compilation. Toutes les informations concernant la distribution et Iinstallation de Matlab® sont
disponibles sur le site officiel (http://www.mathworks.com).

GNU Octave est un langage qui peut remplacer Matlab® . Dans les séance d’exercices, nous utilis-
erons Matlab® | mais les commandes sont presque entiérement compatibles avec Octave. Octave est
aussi un langage interprété; contrairement & Matlab® | Octave est un logiciel libre et gratuite, mais,
dans sa version de base, il presente seulement une interface en ligne de commande. Une interface
graphique est disponible séparément. Toutes les informations sur Octave sont disponibles sur le site
officiel http://www.gnu.org/software/octave/.

Pour ouvrir Matlab® | cliquez sur Start — Programmes — Matlab sous Windows, ou tapez matlab
dans un terminal sous Unix. Matlab® se présente avec un environnement interactif et un prompt
(généralement >>) dans lequel on peut introduire des commandes. Par exemple, pour quitter
Matlab® | tapez la commande:

>> quit

2 Aide en ligne

Matlab® propose une documentation compléte en anglais. Vous avez également acces & une aide
sur différents sujets en tapant la commande:

>> help commande

L’aide affiche un descriptif de la commande, par exemple :

>> help sum
SUM Sum of elements.

S = SUM(X) 1is the sum of the elements of the vector X. If
X is a matrix, S is a row vector with the sum over each
column. For N-D arrays, SUM(X) operates along the first
non—singleton dimension.
If X is floating point, that is double or single, S is
accumulated natively, that is in the same class as X,
and S has the same class as X. If X is not floating point,
S is accumulated in double and S has class double.

n
Il

SUM(X,DIM) sums along the dimension DIM.

0n
Il

SUM (X, "double') and S = SUM(X,DIM, 'double') accumulate
S in double and S has class double, even if X is single.

S = SUM(X, 'native') and S = SUM(X,DIM, 'native') accumulate
S natively and S has the same class as X.

Examples:
If X = 1012
then sum(X,1) is [3 5 7] and sum(X,2) is [3
127;
If X = int8(1:20) then sum(X) accumulates in double and the
result is double (210) while sum (X, 'native') accumulates in

int8, but overflows and saturates to int8(127).

See also prod, cumsum, diff, accumarray, isfloat.

La commande help est trés utile. Habituez-vous a l'utiliser chaque fois que vous avez besoin

d’information sur la syntaxe et les parametres d’entrée et sortie d’'une commande.

3 Déclaration des variables

Matlab® permet de créer et d’initialiser des variables. Les déclarations suivent les régles suivantes:
a) toutes les variables sont des matrices;

b) les variables n’ont pas de type.

Exemples:
a=>5 variable scalaire (1 x 1)
b=1[4.4 —6.9] vecteur ligne (1x2)
c = [-5; 2] vecteur colonne (2 x 1)

d=1[2 3; -1 7] matrice carrée (2 x 2)
s = 'abc' chaine de caractéres (1x3)

t = 3+1 variable scalaire compleze (1 x 1)

Dans ces exemples, on a utilisé les opérateurs suivants:
a) séparateur de ligne: point-virgule ou return ;
b) séparateur de colonne: virgule ou espace blanc;

On a aussi utilisé ['unité imaginaire i, définie par ¢ = /—1 (on peut utiliser de fagon équivalente j
ou 11i). D’autres constantes fundamentales sont définies en Matlab® par

a) pi: le nombre m = 3.14159265. ..

b) exp (1): le nombre e = 2.718281 ...

Il faut noter que Matlab® affiche les nombres avec quatre chiffres apres la virgule, tandis que la
représentation interne est faite avec 16 chiffres. Pour changer ’affichage des nombres en Matlab®
on utilise la commande format. Par exemple, si avant de taper >> pi (la variable pi est une
approximation de), nous écrivons

format long nous obtiendrons 3.14159265358979;
format short nous obtiendrons 3.1416;

format long e nous obtiendrons 3.14159265358979e+00;
format short e nous obtiendrons 3.1416e+00.

4 Workspace

Matlab® permet de connaitre plusieurs informations sur les variables déclarées. Tapez:

who pour afficher toutes les variables.

whos pour afficher toutes les variables avec indication sur leurs tailles.
size (A) pour afficher les dimensions de la matrice A.

length (b) pour afficher la longueur du vecteur b.

clear var pour effacer la variable var.

clear (ou clear all) pour effacer toutes les variables.

5 Opérations fondamentales

Matlab® peut effectuer plusieurs opérations entre matrices. Les opérations fondamentales peuvent
étre partagées en deux catégories.

5.1 Opérations matricielles

Les opérations matricielles usuelles sont définies par +, —, x, ~, \

C

A + B est la somme matricielle, C;; = A;; + Bj
C = A * B estle produit matriciel, Cj; = >, AirBy;

C

A\ B estla division matricielle, C = A~!B

C =A"3 est la troisieme puissance matricielle (C = AxAxA)

Il faut remarquer que ces opérations sont bien définies seulement si les matrices ont des dimensions
cohérentes. Pour l'addition A+B, A et B doivent avoir la méme taille; pour le produit AxB, le
nombre de colonnes de A et le nombre de lignes de B doivent étre égaux; les opérations A\B et A" 3
demandent une matrice A carrée. Par exemple:

> A = [12 3; 456]; B=1[789; 10 11 12];
>> A + B
ans =
8 10 12
14 16 18
>> C = [13 14; 15 16; 17 18];
>> A + C

??? Error using ==> plus
Matrix dimensions must agree.

>> A « C
ans =

94 100
229 244

>> A x B
??? Error using ==> mtimes
Inner matrix dimensions must agree.

Notez que Matlab® renvoie un message d’erreur si les dimensions des matrices ne s’accordent pas
avec l'opération commandée. Apprenez a lire ces messages d’erreur! Pour plus d’informations sur
les messages d’erreur, voir Section 11.

5.2 Opérations élément par élément

Pour exécuter des opérations entre matrices élément par élément, il faut faire précéder 'opérateur
d’un point. Les opérateurs élément par élément sont donc .+ ./ .~ et sont définis entre matrices

de méme dimension ou entre un scalaire et une matrice

C = A .x B estleproduit élément par élément, C;; = A;; B;;

A
C = A ./ B estladivision élément par élément, C;; = Bw
ij

C =A."3 est la troisiéme puissance élément par élément, C;; = Ag’j

6 Manipulation des matrices

Apres avoir défini la matrice A (par exemple une matrice carrée A de taille n), Matlab® permet les
opérations suivantes sur les sous-matrices de A.

6.1 Extraction de sous-matrices

A(2,3) extraction de I’élément Ag3. Attention: le premier valeur
d’une ligne/colonne/vecteur est indiqué par 1

A(:,5) extraction de la colonne [Ajs;...; Ays)
A(l:4,3) extraction de la sous-colonne [A3;...; Ays]
A(l,:) extraction de la ligne [A11,. .., A1,

diag (R) extraction de la diagonale [A11;...; Apy)

6.2 Construction de matrices particulieres

Matlab® permet, en plus, de définir des matrices particulieres (une fois définis les entiers n, m et le
vecteur v).

A = eye(n) matrice identité n X n
A = diag(v) matrice diagonale avec v comme diagonale

A = diag(diag(B)) matrice diagonale, avec diagonale égale a celle de B

A = zeros (n,m) matrice de zéros avec n lignes et m colonnes
A = ones (n,m) matrice de un avec n lignes et m colonnes
A = rand(n,m) matrice aléatoire de nombres entre 0 et 1 avec

n lignes et m colonnes

x = debut:pas:fin vecteur ligne de points équidistribués
avec pas pas entre debut et fin

x = linspace (debut, fin,n) vecteur ligne de n points équidistribués
entre debut et fin

6.3 Fonctions matricielles

Soit A une matrice, Matlab® permet d’effectuer directement les opérations suivantes.

C = A" transposée de A, C;; = Aj;. Si A est complexe, C;; = Aj;
C = inv (R) inverse de A (matrice carrée), C' = AL

d = det (R) déterminant de A (matrice carrée)

r = rank (A) rang de A

nrm = norm(A) norme 2 de A

v = eig(A) valeurs propres de A (matrice carrée)

[V,D] = eig(A) V: matrice des vecteurs propres de A; D: matrice

diagonale avec les valeurs propres de A.

Soit A une matrice carrée de taille n et soit b un vecteur de taille n, alors le vecteur x, solution du
systeme linéaire Ax = b est défini par

>> x = inv(A) * b

Cette commande est théoriquement correcte, cependant, si on est intéressé seulement a la solution
x et pas a l'inverse inv (4), il est préférable d’utiliser un backslash

>>x =A\b

Cette commande résout le systéme linéaire avec des algorithmes fiables et optimaux.

7 Boucles de controle

Matlab® offre, comme plusieurs autres langages, quelques boucles de controle. Ces commandes sont
spécialement utiles pour écrire des programmes Matlab® .

7.1 Boucle for

Si 'on veut exécuter des instructions pour chaque valeur
t1=a,a+1, a+2 a+3, ..., a+n

d’une certaine variable ¢ entre deux bornes assignées a et a + n, on utilise for. Par exemple pour
calculer le produit scalaire ps entre deux vecteurs x et y de taille n, on pose a = 1 et on utilise:

>> n = length (x)

>> ps = 0;

>> for i = 1l:n;

>> pPs = ps + x(i)*y(i);
>> end

Cette boucle est équivalente au produit matriciel entre le vecteur transposé de x et le vecteur y, en
supposant que les facteurs soient deux vecteurs colonnes:

>> ps = x'xy;

Pour créer un vecteur dans une boucle, on peut faire:

>>
>> range = linspace(0,1,11);
>> v o= [1;
>> for i1 = range
v = [v ; sqrt(i)];
end

>> plot (range, V)

7.2 Boucle while

Si 'on veut exécuter plusieurs fois des instructions pendant qu’une expression logique est vraie, on
utilise while. Par exemple, le méme calcul qu’on a considéré avec la boucle for peut étre exécuté
avec

>> n = length (x)

>> ps = 0;

>> 1 = 0;

>> while (i < n);

>> i =1+ 1;

>> ps = ps + x(i)*xy(1);
>> end

7.3 Instruction conditionelle if

Si I'on veut exécuter des instructions seulement si une expression logique est vraie, on utilise i£.
Par exemple, si I’on veut calculer la racine carrée d’une variable scalaire r seulement si r n’est pas
négatif:

>> if (r > = 0)
>> racine = sqrt(r);
>> end

On a plusieurs opérateurs logiques a disposition:

Opérateur ‘ Action logique

&& and

|l or

~ not
== equal to

Taper par exemple help & pour une explication de la liste des opérateurs.

8 Scripts et fonctions

Matlab® permet Pexécution de listes de commandes sauvegardées dans un fichier. Les outils prin-
cipaux sont les script files et les fonctions.

8.1 Script files

Un script file est une suite de commandes Matlab® . Les noms des script files doivent avoir
'extension “.m”. On peut aussi écrire des lignes de commentaires, que Matlab® n’exécutera pas.
Les lignes de commentaires sont introduites par ¢. Pour exécuter un script file tapez son nom, sans
extension, dans le prompt Matlab® .

Une bonne pratique est de commencer un script avec les trois commandes clc, close all,

clear all. Par exemple si le fichier test .m contient les commandes suivantes

clc

close all
clear all
a=0;

for i=1:5

a=a+i"2;

end

a

en tapant

>> test

on aura

ans =
55

8.2 Fonctions

Une fonction Matlab® est une suite de commandes qui nécessite un ou plusieurs input pour étre
exécutée et qui renvoie un ou plusieurs output. On a déja vu plusieurs fonctions; en effet, la plupart
des commandes introduites dans la Section 6 sont des fonctions. Par exemple, la fonction size
renvoie comme output les dimensions d’une matrice.

8.2.1 Utiliser les fonction

Supposons que la fonction helloworld utilise comme input une scalaire et un vecteur et donne
comme output trois variables. La syntaxe suivante permet d’appeler la fonction et de mémoriser
ses outputs dans des variables:

>> helloworld (3, [pi —51);

>> out=helloworld (3, [pi —51);

>> [outl, out2]=helloworld(3, [pi —51);

>> [outl, out2, out3]=helloworld(3, [pi —51);
>> [~, ~, out3]=helloworld(3, [pi —51);

8.2.2 Ecrire une fonction
On a deux facons pour écrire une fonction en Matlab® :
a) @-fonctions;

b) .m functions.

@-functions

On peut définir rapidement des fonctions simples (c’est-a-dire des fonctions qu’on peut écrire en
une ligne seulement) avec la commande @ (parameterl, parameter?2,

Pour définir une fonction £ qui dépend de la variable x, on écrit:

>> £ =

>> f£(1)

ans =
-1

@(x) log(x) — 1;

Si £ dépend de plusieurs variables, nous écrirons par exemple

>> f = @(x,p) log(x) — p;
>> £(1,1)
ans =

—1

.m-functions

Pour écrire des fonctions plus longues qu’'un seule ligne, on écrit les commandes de la fonction dans
un .m file particulier, qui suit ces regles:

a) Le fichier doit commencer par:
function [output arguments] = nom_fonction (input arguments)
Par exemple, I’en-téte d’une fonction pour la méthode de la dichotomie pourrait étre:

function [zero,res,niter]=bisection(fun,a,b,tol,nmax,varargin)

zero =
res =
niter =

return

b) Le fichier doit avoir le méme nom que la fonction (avec extension .m)

c) Les lignes de commentaires qui éventuellement suivent cet en-téte constituent le help de la
fonction.

d) Toutes les variables internes & la fonction sont locales (c’est-a-dire, on pourra pas accéder a
leur valuers dans la ligne de commande >>).

Par exemple, on peut écrire la fonction suivante dans le fichier my_function.m

function f = my_function (x);
f = x."3 — 2xsin(x) + 1;

qui on peut évaluer comme

>> my_function (0)
ans =
1

Attention: pour pouvoir exécuter un script ou une fonction, il faut que le fichier .m correspondant
soit sauvegardé dans le répertoire de travail. Le répertoire de travail est normalement indiqué en
haut de la fenétre principale de Matlab® .

9 Mesurer les temps d’exécution

Pour mesurer le temps pour l'exécution d’une suite des commandes/fonctions Matlab® , il faut
utiliser les commandes tic et toc.

>> tic

>>

>> toc

Elapsed time is 0.000908 seconds

10 Graphisme 2D

La commande plot (a,b) recoit comme input deux vecteurs a et b et crée un graphe dans un plan
cartésien en utilisant les valeurs de a comme abscisses et les valeurs de b comme ordonnées. Par
exemple, en tapant plot ([1 2 7 8],[5 2 —1 pil) on obtient le graphe en Figure 1-gauche.
Si les abscisses sont 1,2, 3, ..., on peut aussi utiliser la syntaxe plot ([5 2 —1 pi]), qui est en
fait équivalent & plot ([1 2 3 4], [5 2 —1 pil) (voir Figure 1-droite).

Pour tracer le graphe de fi(z) = 23 + 1 — 2sin(7z) et fo(z) = 23 + 1 (voir Figure 2), il faut donc
passer par les étapes suivantes:

a) Définir un vecteur de points dans 'intervalle donné:

>> x = —1:0.01:1;

10

5 5
4 4+
3 3l
2 2F
1 e
0 or
- 2 3 4 5 6 7 8 " 15 2 25 3 35 4

Figure 1: Gauche: résultat de la commande plot ([1 2 7 8], [5 2 —1 pi]). Droite: résultat
de la commande plot ([5 2 —1 pi]). Observez que les abscisses sont différentes).

b)

Créer des vecteurs contenants les évaluations des fonctions fi(z), fo(x) pour chaque composant
du vecteur x. Pour faire ¢a, on a deux possibilités: soit calculer immédiatement les vecteurs,
avec les commandes

>> vyl = x."3 + 1 — 2+sin(pi*x);
>> y2 = x.°3 + 1;

soit définir d’abord les fonctions fi(x), fa(x):

>> fl =
>> f2 =

|
@
bl

xX."3 + 1 — 2xsin(pix*x);
x."3 + 1;

|
@
bl

et en suite évaluer les fonctions £1 et £2:

>> yl = £1(x);
>> y2 = f2(x);

Observez qu’on a utilisé .~ (puissance élément par élément) et non pas ~ (puissance ma-
tricielle), parce qu’il faut évaluer la fonction en chaque élément du vecteur x.

Tracer le graphe:

>> plot (x,fl(x),'b")
>> hold on

>> plot (x,f2(x),'g")
>> hold off

L’option 'b'" ou "g' permet de spécifier la couleur de la ligne (“blue” ou “green”). Voir
>> help plot pour une liste d’options. En utilisant les commandes hold onethold off,
tous les graphes tracés entre les deux commandes sont superposés au graphe précédent. Ceci
permet de visualiser plusieurs fonctions dans la méme fenétre.

11

graphs des fonctions f1 et f2

—fl
2

f(x)

-1 ~05 0 05 1
Figure 2: Graphes des fonctions fi(x) et fa(x)

Il y a plein d’autres options graphiques en Matlab® . Voici une liste des commandes qui permettent
d’avoir aussi une grille de repere (grid), un descriptif des axes (xlabel et ylabel), une légende
(en spécifiant le nom de chaque ligne avec 'option 'DisplayName' de la commande plot, et util-
isant apres la commande legend show) ainsi que un titre (title) et de spécifier aussi I’épaisseur
des lignes du graphe ('Linewidth', 2):

>> figure (1)

>> axes ('fontsize',16)

>> plot(x,fl(x),'b', 'LineWidth',2, 'DisplayName', "£1")
>> hold on

>> plot(x,f2(x),'g', 'LineWidth',2, 'DisplayName', "£2")
>> grid on

>> xlabel ('x'")

>> ylabel ("f(x)")

>> legend show

>> title('graphes des fonctions f.1 et £.2")

cette commande ouvre la fenétre 1 avec le graphe. Le résultat de ces commandes est représenté
dans la Figure 2. Pour plus de détails sur la fonction plot tapez >> help plot.

Matlab® donne aussi la possibilité de créer avec simplicité des graphes en échelle logarithmique. On
a trois possibilités (voir Figure 3):

a) semilogx (x,y) trace un graphe dont ’échelle horizontale est logarithmique tandis que
I’échelle verticale est lineaire. Cette fonction est idéale pour dessiner le graphe de données
ou fonctions qui s’étendent sur des grands intervalles de x. Les valeurs de x peuvent étre
seulement positives (car on en prend le logarithme). En particulier, le graphe de la fonction
f(x) =log(x) est une lignes droite dans un graphe semilogx.

b) semilogy (x,y) trace un graphe dont I’échelle horizontale est linéaire tandis que ’échelle
verticale est logarithmique. Cette fonction est idéale pour dessiner le graphe de données ou
fonctions qui ont des grandes variations sur des petits intervalles de x. Les valeurs de y peuvent
étre seulement positives. En particulier, les graphes des fonctions f(z) = e,k = 1,2,3...
sont lignes droites a pente 1,2,3... dans un graphe semilogy.

¢) loglog (x,fl(x)) trace un graphe dont les deux échelles horizontales et verticales sont

12

10

— y=log(x)

o y=xP

—y=log(x)

o y=xPe1

10

Figure 3: Graphiques en échelles linéaires (en haut a gauche), semilogx (en haut a droite),
semilogy (en bas & gauche), loglog (en bas & droite) des fonctions y = log(z),y = x,y = 2%,y =

ex’ y = 621

13

logarithmiques. Les valeurs de x et de y peuvent étre seulement positives. Les graphes
des fonctions f(x) = ¥,k = 1,2,3... sont lignes droites & pente 1,2,3... dans un graphe
loglog. En conséquence, cette fonction est idéale pour reconnaitre ce type de relation entre
deux quantités.

11 Apprendre a lire les messages d’erreur

Comme déja dit a la fin de la Section 5.1, chaque fois qu’on saisit une commande qui contient une
erreur de syntaxe, Matlab® s’arréte et donne un message d’erreur. Ces messages donnent souvent
des informations tres claires sur l'erreur passé, et donc sur la correction des erreurs. Les erreurs les
plus communes sont:

a) Undefined function or variable 'D': on a essayé d’extraire la valeur d’une variable
qui n’existe pas

>> clear all
>> b

b) Index exceeds matrix dimensions: on a essayé d’extraire une valeur d’une matrice,
mais hors de la taille de la matrice.

>> a=[1 2 3]
>> a(4)

c) Subscript indices must either be real positive integers or logicals: on
a essayé d’extraire une entreée d’une matrice en utilisant un indice qui n’est pas un entier
supérieur ou égal a 1 (par exemple, 0 ou une valeur réelle):

>> a=[1 2 3]
>> b=3.2;
>> a(0)

>> a(l.h)
>> a(b)

d) Error using +
Matrix dimensions must agree.

On a essayé de additioner deux matrices de dimensions non cohérentes:

>> a=[1 2]
>> b=[3; 4]
>> a+tb

e) Error using «
Inner matrix dimensions must agree.

On a essayé de multiplier deux matrices de dimensions non cohérentes. On a peut-étre oublié
le caractere “.” qui déclare 'opération élément-par-élément?

14

f)

>> a=[1 5 5]
>> b=[3 2 6]
>> axb

Error using
Inputs must be a scalar and a square matrix.

On a essayé de calculer la puissance d’une matrice non carrée. On a peut-étre oublié le
caractere qui déclare 'operation élément-par-élément?

[T

>> [1 2; 3 4; 4 5]7°2

Undefined function 'helloworld' for input arguments of type 'double'.
La fonction helloworld n’existe pas, ou elle n’est pas dans le répertoire de travail:

>> helloworld(4)

Error using plot
Vectors must be the same lengths.

Les vecteurs que 'on veut utiliser comme abscisse et ordonnée ont des longeurs différentes.

>> plot ([1 2 3],[4 51])

Error: Unexpected MATLAB operator.

Matlab® n’arrive pas & interpréter la commande que I’on a saisi. Probablement il s’agit d’une
faute de frappe. Une ligne verticale vous indiquera la position de I’erreur!

>> a=a+x*5
a=a+*5

Error: Unexpected MATLAB operator.

Error using plot
Conversion to double from function_handle is not possible.

On veut tracer le graphe d’une fonction, définie par @, mais on a oublié d’évaluer la fonction:

>> f=0(t) t."2;
>> x=1:10;
>> plot (x, f)

15

12

o point
——polynome||

117

101 o

Figure 4: Données et polynome d’interpolation

12 Polynémes en Matlab®
Considérons un polynome de degré n:
f(x) = ana” +an12" ' + ... +aix + ao.

Matlab® représente les polynémes de degré n sous la forme d’un vecteur p = [, Gn_1,...,a0] de
taille n + 1 qui contient les coeflicients en ordre décroissant par rapport au degré associé. Par
exemple, le vecteur associé au polynéme f(x) = 323 — 42 + = est

>>p = [3, =4, 1, 0];

Pour évaluer ce polynoéme, on utilise la commande polyval:

>> x = 0:.1:1;
>> y = polyval (p, x);

Dans ce cas, les éléments du vecteur y sont les valeurs du polynoéme calculées pour chaque élément
du vecteur x.

Pour obtenir le vecteur associé au polynome de degré n approximant un jeu de données, on utilise
polyfit. Sila taille des données est plus grande que n+1, on a le polynéme approximant au sens
des moindres carrés; si elle est égale a n+1, on a le polynome interpolant. Par exemple, si on veut
calculer le polynome de degré 8 qui approche les données du vecteur y (au sens des moindre carrés)
et en tracer le graphe, il faut utiliser le script suivant;

clc
clear all
close all

x = [1 2 3 4 5 6 78 910 11 12];
y =[8 7.57.5 7.5 7.6 7.8 8 10 8 7.5 7.5 7.7];

p = polyfit(x, y, 8);

16

X_int x(1):0.01:x (end)
y-int = polyval (p, x-int)

figure (1)
axes ('fontsize',16)
plot(x, y, 'or', x_int, y_-int, 'b', 'linewidth',

xlabel ("x")
ylabel ('y")
legend('point', '"polynome')

axis([1 12 6 12]);

2);

17

