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Corrigé 9

Exercice 1

1.a) Vérification directe.

1.b) Multiplions la premiére équation du probléme par une fonction v € C*([0,1]). En
intégrant sur l'intervalle [0, 1] nous obtenons

—/Olu"(x)v(x)dl’ = 2/0121(x)d:c.

En intégrant par parties la premiére intégrale de cette équation, nous obtenons
1 =1 1
/ o (z)v' (x)dx — [u’(a:)v(a:)] = 2/ v(z)dz.
0 z=0 0

Si nous imposons a la fonction v d’étre nulle en = 0 et = 1, alors nous déduisons
I’équation

/0 lu’(x)v'(x)d:c = 2 /0 lv(x)dx.

Soit V' l’ensemble des fonctions continues g : [0,1] — R, de premiére dérivée ¢’
continue par morceaux et telles que g(0) = ¢g(1) = 0
probléme consiste a trouver u € V' tel que

La formulation faible du

/Olu/(x)v'(x)da: = 2/01v(x)d:5, Yo € V.

1.c) On considére une méthode d’éléments finis continus de degré 1 pour résoudre le
probléme. Pour ceci, notons h = % et x; = jh avec j = 0,1,2,3. Les fonctions
“chapeaux’ p1 et o de la base d’éléments finis associée aux noeuds x; et xo sont

données par:

z _h$0 siz € [zo,x1], ’ _hxl stz € [z1,x2],
p1(z) = 277 gre [x1, z2], p2(x) = BT Gae [2, T3],
0 six > xa, 0 six < 2.

Notons Vj, = span{p1, p2}. L’approximation de Galerkin correspondant au probléme
faible précédent consiste a trouver uy € Vj, tel que

1 1
/ up (z)vy, (x)dx = 2/ vp(x)dz, Noup € V.
0 0



Comme nous cherchons uy dans Vj, nous pouvons écrire

un(x) = w11 (2) + ugpa (),

les coefficients u; et ue étant les inconnues du probléme. En choisissant v, = ¢
puis, v, = o dans 'approximation de Galerkin nous obtenons le systéme de deux
équations & deux inconnues uj et ug suivant:

u fy ¢ (@)@ (z)ds +us [y ¢h(@)e)(x)de = 2 [y o1 (a)da,

u fi ¢4 (@)eh(@)de +us [} h(a)ph(z)dr = 2 [ pa()dz.

Ces relations peuvent s’écrire sous la forme d’un systéme linéaire:

(all (Z12>(U1>:<f1>
as  a U2 fa )’

ou les coefficients a;;, fi, ¢ = 1,2, i = 1,2 sont définis par:
1 1
wi= [ vl e fi=2 [ alod
0 0
En effectuant les calculs nous obtenons:
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fi= 2/ v1(x)dr = 2/ v1(z)dr + 2 1(x)de =2= +2- =2h,
0 T

1
fo= 2/0 po(x)dx = 2h.

On obtient le systéme linéaire:

() ) = (5)

La solution est donné par:

(1) ()4
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Puisque la solution exacte du probléme satisfait

w(zy) = 21(1 — 21) = é <1 _ ;) _ g
(@) = (1 — 1) = g <1 _ g) _ %

on a bien u; = u(x;), i =1,2.

1.d) On peut également résoudre le probléme par une méthode de différences finies. On
approche alors u”(z;), i = 1,2 par

w(wi—1) — 2u(z;) + w(zisr)
h? '

La méthode des différences finies conduit & la résolution du systéme linéaire

1 /2 -1 up \ [ 2

h2 —1 2 ug o 2 )
La solution du systéme linéaire obtenu par la méthode des différences finies coincide
donc avec la solution du systéme linéaire obtenu par la méthode des éléments finis.

Exercice 2

2.a) Soit V lensemble des fonctions continues g : [0,1] — R, de premiére dérivée ¢’

continue par morceaux et telles que g(1) = 0. La formulation faible du probléme
consiste a trouver u € V tel que

1 1
/0 u (z)v' (z)de = /0 f(z)v(z)dz, YveV.

2.b) La représentation graphique des fonctions de base ¢;,i = 0,..., N est la suivante:

Nous notons Vj le sous-espace vectoriel de V' engendré par les fonctions ¢;, i =

0,...,N. L’approximation de Galerkin correspondant au probléme faible consiste &
trouver up, € Vj, tel que

1 1
/ up, (z)v),(x)dx = / f(@)vp(z)dx, Vop, € V.
0 0



2.c)

Comme nous cherchons uy dans Vj, nous pouvons écrire

N
up(x) = Z uipi(z),
i=0

les coefficients w;, ¢ = 0,..., N étant les inconnues du probléme. En choisissant
vy =, j =0,1,2,..., N dans 'approximation de Galerkin, nous obtenons le systeme
de N + 1 équations & N + 1 inconnues suivant:

N

Su( [ dwg@ar) = [ @eei 5205

=0

Ces relations peuvent s’écrire sous la forme d’un systéme linéaire. Soit A la (N +
1) x (N + 1)-matrice de coefficients A;j, 0 <4, < N et soit f le (N + 1)-vecteur de
coefficients f;, 0 < j < N définis par :

1 1
A= [ d@e@a o = [ e

Alors le probléme est équivalent a trouver le (N + 1)-vecteur @ tel que

—

Ai = .

Les seuls coefficients non-nuls de A sont les coefficients A;;, j = 0,..., N, les coeffi-
cients A; 41, j =0,...,N —1 et les coefficients A;11;, j =0,...,N —1. Comme
Aj; = Ayj il suffit de calculer Aj; et Ajj4q:

Ty
Ajj = /

j—1

Tj+1

(cp;-(x))Qd:):—i—/ ((p}(m))zdm, j=1,...,N,

Zj

Agp = /Il(%(?ﬁ))de

0

et _ , / |
Ajj+ =/ ©i(x) i (x)de, j=0,...,N—1
Zj
De méme nous avons

Tjyl

fi= /% f(x)goj(x)dx—l—/ f(x)pj(x)dz, j=1,...,N.

J

et

ﬁ:/“ﬂ@mmm.

On a Aj; = %, Ajiq1 = f% pour j = 1,...,N et Agg = % Pour approcher les
intégrales des coefficients de J?, nous utilisons la formule du trapéze:

o Tht1 — Tk
[ atndn = T (gl 4 o).
Tk



ou g:[0,1] — R est continue. On trouve donc

/ a f(x)pj(z)dx = hf(z;) = fj, j=1,...,N

Tj—1

et

[ f@wads = 3 1(0) = i

Le systéme linéaire Al = f est donc bien celui recherché avec o = % fo= % f(xo).
2.d) La formule
U—1 — Ul
2h

vient de la condition de bord «'(0) = 0 qu’on approche par une formule de différences
finies centrées. La deuxiéme formule

=0

—u_1 4+ 2ug — uy
h2

= f(zo)

vient de I'équation —u”(z) = f(z) qu’on approche au point zg par une formule de
différences finies centrées. En utilisant ces deux formules, et en appliquant le schéma

de différences finies centrées pour les indices ¢ = 0,..., N on trouve
— Ui 2 . .
Uz 1+h;IJZ U7,+1 :f(ﬂ/’,t)’ ’L: 1’,,"N’
—u1 + ug 1
e )
un+1 = 0.

Le systéme linéaire correspondant est le suivant:

1 -1 1o 1 (o)
-1 2 -1 0 “ 2f(:nl(;
1 u2
= 1 2 -1 2o fla) |
0 -1 2 “;V];l F@w)

donc c’est le méme que celui qu’on a trouvé en utilisant la m’ethode d’éléments finis
de degré un.

Exercice 3

3.a) Soit V' l'ensemble des fonctions continues g : [0,1] — R, de premiére dérivée ¢’
continue par morceaux et telles que g(0) = g(1) = 0. La formulation faible consiste
a trouver u € V tel que

1 1
/ (1 + )/ (z)v (z)de = / sin(x)v(z)dx, Yo e V. (1)
0 0



3.b)

3.d)

Si w1, @2, ..., e sont N fonctions linéairement indépendantes de V', nous notons V}, le
sous-espace vectoriel engendré par les ¢;, ¢ = 1,..., N. L’approximation de Galerkin
correspondant au probléme consiste a trouver up € Vj, tel que

1 1
/ (1 + z)up, (z)v),(z)dr = / sin(x)vp(z)dz, Vv, € Vj,. (2)
0 0

Comme nous cherchons uy dans Vj, nous pouvons écrire

N
un(z) =Y uipi(x),
=1

les coefficients u;, ¢ = 1,..., N étant les inconnues du probléme. En choisissant
vy, = @, J = 1,2,..., N dans , nous obtenons le systéme de N équations & N
inconnues u;, ¢ = 1,2, ..., N suivant:

N 1 1
Zui (/ (1 —l—:L')(p;(x)(p;(x)dx) = / sin(z)j(z)dr, j=1,2,...,N.
i=1 0 0
Ces relations peuvent s’écrire sous la forme d’un systéme linéaire. Soit A la N x N-
matrice de coefficients Aj;, 1 < j,7 < N et soit f le N-vecteur de coefficients f;,
1 <7 < N définis par :

1 1
Ay = /0 (14 z)i(z) ¢ (x)dx et fj:/o sin(z)p;(x)dx.

Alors le probléme (2)) est équivalent & trouver le N-vecteur 4 tel que

A= f.
On considére la base particuliére des éléments finis de degré 1 et on approche numérique-
ment les coefficients de la matrice A et du vecteur f Par définition des ¢;, la matrice
A est bien tridiagonale et les seuls coefficients non-nuls de A sont les coefficients A; ;,
Jj = 1,...,N, les coefficients Aj;i1, 7 = 1,...,N — 1 et les coefficients A;_1 ;,
Jj=2,...,N. Comme Aj; = A;; il suffit de calculer Aj; et A; ;i1:

Tj
Ajj = /

j—1

Tj+1

(el + [ 1+ o))

z;
et . , /
g = [ @+ 0@ (@)
T
De méme nous avons

fa':/:j

7j—1

Tj+1

sin(x)g;(z)dr + / sin(x)g;(z)dz.

Ty

Soit A la N x N-matrice obtenue en utilisant la formule des trapézes pour approcher

les coefficients de A. De méme, soit f le second membre obtenu au moyen de la
formule des trapézes. Nous obtenons alors

( ~ 1 1 i 2(1 : 1 :
Ay = h(( + T 1) +2( ;ij)+( +5’3J+1)>’ j=1,.,N
- 1(14+z)+ 1+ .
Ajjr = _h( J) 2( . ), j=1..,(N-1)
\ fi = hsin(z)), j=1,..,N.




	
	
	

