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Exercice 1

1.a) Vérification directe.

1.b) Multiplions la première équation du problème par une fonction v ∈ C1([0, 1]). En
intégrant sur l’intervalle [0, 1] nous obtenons

−
∫ 1

0
u′′(x)v(x)dx = 2

∫ 1

0
v(x)dx.

En intégrant par parties la première intégrale de cette équation, nous obtenons∫ 1

0
u′(x)v′(x)dx−

[
u′(x)v(x)

]x=1

x=0
= 2

∫ 1

0
v(x)dx.

Si nous imposons à la fonction v d’être nulle en x = 0 et x = 1, alors nous déduisons
l’équation ∫ 1

0
u′(x)v′(x)dx = 2

∫ 1

0
v(x)dx.

Soit V l’ensemble des fonctions continues g : [0, 1] → R, de première dérivée g′

continue par morceaux et telles que g(0) = g(1) = 0. La formulation faible du
problème consiste à trouver u ∈ V tel que∫ 1

0
u′(x)v′(x)dx = 2

∫ 1

0
v(x)dx, ∀v ∈ V.

1.c) On considère une méthode d’éléments finis continus de degré 1 pour résoudre le
problème. Pour ceci, notons h = 1

3 et xj = jh avec j = 0, 1, 2, 3. Les fonctions
“chapeaux” ϕ1 et ϕ2 de la base d’éléments finis associée aux noeuds x1 et x2 sont
données par:

ϕ1(x) =


x− x0
h

si x ∈ [x0, x1],

x2 − x
h

si x ∈ [x1, x2],

0 si x > x2,

ϕ2(x) =


x− x1
h

si x ∈ [x1, x2],

x3 − x
h

si x ∈ [x2, x3],

0 si x < x1.

Notons Vh = span{ϕ1, ϕ2}. L’approximation de Galerkin correspondant au problème
faible précédent consiste à trouver uh ∈ Vh tel que∫ 1

0
u′h(x)v

′
h(x)dx = 2

∫ 1

0
vh(x)dx, ∀vh ∈ Vh.



Comme nous cherchons uh dans Vh, nous pouvons écrire

uh(x) = u1ϕ1(x) + u2ϕ2(x),

les coefficients u1 et u2 étant les inconnues du problème. En choisissant vh = ϕ1

puis, vh = ϕ2 dans l’approximation de Galerkin nous obtenons le système de deux
équations à deux inconnues u1 et u2 suivant: u1

∫ 1
0 ϕ
′
1(x)ϕ

′
1(x)dx+ u2

∫ 1
0 ϕ
′
2(x)ϕ

′
1(x)dx = 2

∫ 1
0 ϕ1(x)dx,

u1
∫ 1
0 ϕ
′
1(x)ϕ

′
2(x)dx+ u2

∫ 1
0 ϕ
′
2(x)ϕ

′
2(x)dx = 2

∫ 1
0 ϕ2(x)dx.

Ces relations peuvent s’écrire sous la forme d’un système linéaire:(
a11 a12
a21 a22

)(
u1
u2

)
=

(
f1
f2

)
,

où les coefficients aij , fi, i = 1, 2, i = 1, 2 sont définis par:

aij =

∫ 1

0
ϕ′i(x)ϕ

′
j(x)dx et fi = 2

∫ 1

0
ϕi(x)dx.

En effectuant les calculs nous obtenons:

a11 =

∫ 1

0
ϕ′1(x)ϕ

′
1(x)dx =

∫ x1

x0

ϕ′1(x)ϕ
′
1(x)dx+

∫ x2

x1

ϕ′1(x)ϕ
′
1(x)dx,

=

∫ x1

x0

(
1

h

)(
1

h

)
dx+

∫ x2

x1

(
−1

h

)(
−1

h

)
dx =

x1 − x0
h2

+
x2 − x1
h2

=
2

h
,

a22 =

∫ 1

0
ϕ′2(x)ϕ

′
2(x)dx =

2

h
,

a12 = a21 =

∫ 1

0
ϕ′1(x)ϕ

′
2(x)dx =

∫ x2

x1

(
−1

h

)(
1

h

)
dx = −1

h
,

f1 = 2

∫ 1

0
ϕ1(x)dx = 2

∫ x1

x0

ϕ1(x)dx+ 2

∫ x2

x1

ϕ1(x)dx = 2
h

2
+ 2

h

2
= 2h,

f2 = 2

∫ 1

0
ϕ2(x)dx = 2h.

On obtient le système linéaire:

1

h

(
2 −1
−1 2

)(
u1
u2

)
= h

(
2
2

)
.

La solution est donné par:(
u1

u2

)
=

(
2h2

2h2

)
=

(
2
9

2
9

)
.
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Puisque la solution exacte du problème satisfait

u(x1) = x1(1− x1) =
1

3

(
1− 1

3

)
=

2

9
,

u(x2) = x2(1− x2) =
2

3

(
1− 2

3

)
=

2

9

on a bien ui = u(xi), i = 1, 2.

1.d) On peut également résoudre le problème par une méthode de différences finies. On
approche alors u′′(xi), i = 1, 2 par

u(xi−1)− 2u(xi) + u(xi+1)

h2
.

La méthode des différences finies conduit à la résolution du système linéaire

1

h2

(
2 −1
−1 2

)(
u1
u2

)
=

(
2
2

)
.

La solution du système linéaire obtenu par la méthode des différences finies coïncide
donc avec la solution du système linéaire obtenu par la méthode des éléments finis.

Exercice 2

2.a) Soit V l’ensemble des fonctions continues g : [0, 1] → R, de première dérivée g′

continue par morceaux et telles que g(1) = 0. La formulation faible du problème
consiste à trouver u ∈ V tel que∫ 1

0
u′(x)v′(x)dx =

∫ 1

0
f(x)v(x)dx, ∀v ∈ V.

2.b) La représentation graphique des fonctions de base ϕi, i = 0, . . . , N est la suivante:

Nous notons Vh le sous-espace vectoriel de V engendré par les fonctions ϕi, i =
0, ..., N . L’approximation de Galerkin correspondant au problème faible consiste à
trouver uh ∈ Vh tel que

∫ 1

0
u′h(x)v

′
h(x)dx =

∫ 1

0
f(x)vh(x)dx, ∀vh ∈ Vh.
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Comme nous cherchons uh dans Vh, nous pouvons écrire

uh(x) =
N∑
i=0

uiϕi(x),

les coefficients ui, i = 0, . . . , N étant les inconnues du problème. En choisissant
vh = ϕj , j = 0, 1, 2, ..., N dans l’approximation de Galerkin, nous obtenons le système
de N + 1 équations à N + 1 inconnues suivant:

N∑
i=0

ui

(∫ 1

0
ϕ′i(x)ϕ

′
j(x)dx

)
=

∫ 1

0
f(x)ϕj(x)dx, j = 0, ..., N.

Ces relations peuvent s’écrire sous la forme d’un système linéaire. Soit A la (N +
1)× (N + 1)-matrice de coefficients Aij , 0 6 i, j 6 N et soit ~f le (N + 1)-vecteur de
coefficients fj , 0 6 j 6 N définis par :

Aij =

∫ 1

0
ϕ′i(x)ϕ

′
j(x)dx et fj =

∫ 1

0
f(x)ϕj(x)dx.

Alors le problème est équivalent à trouver le (N + 1)-vecteur ~u tel que

A~u = ~f.

Les seuls coefficients non-nuls de A sont les coefficients Ajj , j = 0, . . . , N , les coeffi-
cients Aj,j+1, j = 0, . . . , N − 1 et les coefficients Aj+1,j , j = 0, . . . , N − 1. Comme
Aji = Aij il suffit de calculer Ajj et Aj,j+1:

Ajj =

∫ xj

xj−1

(ϕ′j(x))
2dx+

∫ xj+1

xj

(ϕ′j(x))
2dx, j = 1, . . . , N,

A0,0 =

∫ x1

x0

(ϕ′0(x))
2dx

et
Aj,j+1 =

∫ xj+1

xj

ϕ′j(x)ϕ
′
j+1(x)dx, j = 0, . . . , N − 1.

De même nous avons

fj =

∫ xj

xj−1

f(x)ϕj(x)dx+

∫ xj+1

xj

f(x)ϕj(x)dx, j = 1, . . . , N.

et

f0 =

∫ x1

x0

f(x)ϕ0(x)dx.

2.c) On a Ajj = 2
h , Aj,j+1 = − 1

h pour j = 1, . . . , N et A0,0 = 1
h . Pour approcher les

intégrales des coefficients de ~f , nous utilisons la formule du trapèze:∫ xk+1

xk

g(x)dx ≈ xk+1 − xk
2

(
g(xk) + g(xk+1)

)
,
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où g : [0, 1]→ R est continue. On trouve donc∫ xj+1

xj−1

f(x)ϕj(x)dx ≈ hf(xj) = f̃j , j = 1, . . . , N

et ∫ x1

x0

f(x)ϕ0(x)dx ≈
h

2
f(x0) = f̃0.

Le système linéaire A~̃u =
~̃
f est donc bien celui recherché avec α = 1

h f̃0 =
1
2f(x0).

2.d) La formule
u−1 − u1

2h
= 0

vient de la condition de bord u′(0) = 0 qu’on approche par une formule de différences
finies centrées. La deuxième formule

−u−1 + 2u0 − u1
h2

= f(x0)

vient de l’équation −u′′(x) = f(x) qu’on approche au point x0 par une formule de
différences finies centrées. En utilisant ces deux formules, et en appliquant le schéma
de différences finies centrées pour les indices i = 0, . . . , N on trouve

−ui−1 + 2ui − ui+1

h2
= f(xi), i = 1, . . . , N,

−u1 + u0
h2

=
1

2
f(x0),

uN+1 = 0.

Le système linéaire correspondant est le suivant:

1

h2


1 −1
−1 2 −1 0

−1 2 −1
. . . . . . . . .

0 −1 2





u0
u1
u2
...

uN−1
uN


=


1
2f(x0)
f(x1)
f(x2)

...
f(xN )

 ,

donc c’est le même que celui qu’on a trouvé en utilisant la m’ethode d’éléments finis
de degré un.

Exercice 3

3.a) Soit V l’ensemble des fonctions continues g : [0, 1] → R, de première dérivée g′

continue par morceaux et telles que g(0) = g(1) = 0. La formulation faible consiste
à trouver u ∈ V tel que∫ 1

0
(1 + x)u′(x)v′(x)dx =

∫ 1

0
sin(x)v(x)dx, ∀v ∈ V. (1)
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3.b) Si ϕ1, ϕ2, ..., ϕN sont N fonctions linéairement indépendantes de V , nous notons Vh le
sous-espace vectoriel engendré par les ϕi, i = 1, ..., N . L’approximation de Galerkin
correspondant au problème (1) consiste à trouver uh ∈ Vh tel que∫ 1

0
(1 + x)u′h(x)v

′
h(x)dx =

∫ 1

0
sin(x)vh(x)dx, ∀vh ∈ Vh. (2)

Comme nous cherchons uh dans Vh, nous pouvons écrire

uh(x) =
N∑
i=1

uiϕi(x),

les coefficients ui, i = 1, . . . , N étant les inconnues du problème. En choisissant
vh = ϕj , j = 1, 2, ..., N dans (2), nous obtenons le système de N équations à N
inconnues ui, i = 1, 2, ..., N suivant:

N∑
i=1

ui

(∫ 1

0
(1 + x)ϕ′i(x)ϕ

′
j(x)dx

)
=

∫ 1

0
sin(x)ϕj(x)dx, j = 1, 2, ..., N.

Ces relations peuvent s’écrire sous la forme d’un système linéaire. Soit A la N ×N -
matrice de coefficients Aji, 1 6 j, i 6 N et soit ~f le N -vecteur de coefficients fj ,
1 6 j 6 N définis par :

Aji =

∫ 1

0
(1 + x)ϕ′i(x)ϕ

′
j(x)dx et fj =

∫ 1

0
sin(x)ϕj(x)dx.

Alors le problème (2) est équivalent à trouver le N -vecteur ~u tel que

A~u = ~f.

3.c) On considère la base particulière des éléments finis de degré 1 et on approche numérique-
ment les coefficients de la matrice A et du vecteur ~f . Par définition des ϕj , la matrice
A est bien tridiagonale et les seuls coefficients non-nuls de A sont les coefficients Aj,j ,
j = 1, . . . , N , les coefficients Aj,j+1, j = 1, . . . , N − 1 et les coefficients Aj−1,j ,
j = 2, . . . , N . Comme Aji = Aij il suffit de calculer Ajj et Aj,j+1:

Ajj =

∫ xj

xj−1

(1 + x)(ϕ′j(x))
2dx+

∫ xj+1

xj

(1 + x)(ϕ′j(x))
2dx

et
Aj,j+1 =

∫ xj+1

xj

(1 + x)ϕ′j(x)ϕ
′
j+1(x)dx

De même nous avons

fj =

∫ xj

xj−1

sin(x)ϕj(x)dx+

∫ xj+1

xj

sin(x)ϕj(x)dx.

3.d) Soit Ã la N ×N -matrice obtenue en utilisant la formule des trapèzes pour approcher
les coefficients de A. De même, soit ~̃

f le second membre obtenu au moyen de la
formule des trapèzes. Nous obtenons alors

Ãjj =
1

h

(
(1 + xj−1) + 2(1 + xj) + (1 + xj+1)

2

)
, j = 1, ..., N

Ãj,j+1 = −1

h

(1 + xj) + (1 + xj+1)

2
, j = 1, ..., (N − 1)

f̃j = h sin(xj), j = 1, ..., N.

6


	
	
	

