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Corrigé 8

Exercice 1

Notons ;1 1/ = (j +1/2)h, j = 0,1,..., N. L’approximation de la dérivée premiére d’une
fonction v au point x; par une formule de différences finies centrées est :

V(1) U(ﬂfz’+1/2) ; U(xifl/Q)‘
Par conséquent, en posant v(z) = (2 + sin(z))u/(z), on a

(2 4 sin(@iy10))0 (Tig12) — (2 + sin(@i_1/2))u/ (25-1/2)
h

d . / ~
- ((2 + sin(z;))u (xZ)) =

@ sineiy)) (i) — ule) — 2+ sin(ei 1)) (u(e:) — ulwi1)
~ 2 )
Un schéma basé sur des différences centrées pour le probléme donné revient & chercher les

u;, ¢ =1,..., N tels que

—% ((2 + sin(@ip1/2)) (Wig1 — i) — (2 +sin(z;_12)) (Wi — uie1)) = f(z:), i=1,...,N,

ug = un+1 = 0.

Ce probléme peut s’écrire sous la forme du systéme linéaire de taille N donné par :

4+ sin(zy /o) + sin(zs/2) —2 —sin(z3/2) u1 f(z1)
uz f(z2)
—2 —sin(z3,2)
1
= =
-2- Sin(IN—l/Q)
‘ . . uN-—1 fl@n-1)
—2—sin(zy_172) 4+sin(zy_1/2) +sin(zny1/2)
un Jf(@N)

Remarque : Une mauvaise méthode consiste a écrire I’équation sous la forme ((2 +
sin(z))u’) = (2 + sin(z))u” 4 cos(x)u’, puis appliquer la méthode des différences finies.
En effet, en procédant de cette maniére on obtient une matrice qui n’a pas la propriété de
symétrie de la matrice ci-dessus.



Exercice 2
En utilisant la formule de différences finies centrées vue au cours pour 'approximation de
u’(z) et v/(z), le schéma peut s’écrire :

—Ui—1 + 2u; — Ui — flz), =1, N+1
- 1/ It A I

h2
ug = 07
UN+2 — UN
U + —— =05.
N+1 2%
Remarque : Ce probléme comporte N + 1 inconnues, w1, ..., Un41-

En éliminant I'inconnue w2, ce schéma peut s’écrire sous la forme d’un systéme linéaire
de taille N 4+ 1 donné par :

2 -1 U1 f(z1)
-1 2 -1 U f(x2)
1 -1 ) ) : _ :
h2 U | : :
-1 2 -1 UN f(zN)
-1 1+h) \uns1 s (@ny) + 35

Remarque : La derniére équation du systéme a été divisée par 2 afin d’obtenir une matrice
symétrique.

Exercice 3

3.a) On utilise la formule de différences finies centrées pour approcher u”(x):

() ~ §2u(x) _ u(x —h) — 2u(x) + u(z + h)
2 h? ’

Considérons le N-vecteur @ = (uj);\f:l, ou les u; ~ u(x;), j = 1,2,...,N. Posons
ug = 0 et uyy1 = 0. Le systéeme d’équations pour discrétiser le probléme est le

suivant:

—Uj—1 + 2Uj — Uj41
h2
Uugp = UN+1 = 0.

+ (1 +zj)uj +zje = f(z;), j=1,2,...,N,

Ce probléme est donc équivalent & chercher le vecteur @ € RN tel que F (0) = 0, ol
la fonction F' est définie par :

1 Fl(vl,...,vN)
N () - F2U17"'7UN
F:o=| " | eRN = F@®) = ( _ ) eRY,
uN Fn(vy,...,vN)



2v; — v
Fi(v) = % + (1 4+ z1)vy + 21" — f(271),
. —Vi_1 4+ 2v; —v; ) .
F;(v) = —2 ! h2] it I+ zj)v; + e — f(x), j=2,..,N—1,
., —un—1+ 2v
Fn (V) = % + (1 +ay)e’™ — f(zn).

3.b) La matrice jacobienne est définie par :

a; ¢
c1 as ¢
cy agz - 0

DF (%) = ;

0 . aN-1 CN-1

CN-1 aN

avec

aj = h22 + (14 ) + xje j=1,2,...,N,

cj:—ﬁ, j=1,2,..,N—1.

Pour tout 7 € RV, la matrice DF () est donc bien symétrique. Elle est définie
positive car VZ € RY:

N

T B L

zTDF(U)z:ﬁ zl—}—zN—i—Z —z]+1 +Z (14 ;) + xje” )2]2-20,
7j=1

et ZTDF(%)Z = 0 si et seulement si Z= 0.

Remarque: On peut également noter que c’est la somme d’une matrice symétrique
définie positive et d’une matrice diagonale & coefficients positifs.

3.c) Comme la matrice jacobienne est symétrique définie positive, la décomposition de
Cholesky A = LL” est toute indiquée pour résoudre le systéme linéaire & chaque pas.
On compléte 'algorithme de la méthode de Newton donné dans le fichier diffinies.m
de la maniére suivante :

| function [u]l=diffinies (N, max_iter = 10)

2 % parametres

3 %

1 % N : nombre d’inconnues du systeme non lineaire

5 % h : pas d’espace

6 % u : N-vecteur, approximation de la solution du probleme
aux limites

7 %hooa : N-vecteur, diagonale de la matrice jacobienne A,

8 % puis diagonale de L tq A=LL"T

9 h @ : (N-1)-vecteur, sous-diagonale de la matrice
jacobienne A,

10 A puis sous-diagonale de L tq A=LL"T

11 % b : N-vecteur, second membre du systeme lineaire A y = b
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yA puis solution du systeme lineaire A y = b
%
h =1/ (N + 1);
coeff = (N + 1)°2;
%
% initialisation : u~0
YA
for i =1 : N
u(i) = 1.;
end

A
% algorithme de Newton : DF(u"n) ( u™n-u~{n+1} ) = F(u"n), c’est-a
-dire

% Ay = b, puis u”{n+1} = u"n - y

yA

for n = 1 : max_iter

A

% remplir la matrice jacobienne A = DF(u~n) et le second membre b
= F(u~n)

A
for i =1 : N
a(i) = 2 * coeff + (1 + i * h) + i * h * exp(u(i));

end
for i=1:N-1
c(i) = -1 * coeff;
end
b(1) = (2 * u(1) - u(2)) * coeff + (1 + h) * u(1) + h * exp(u
(1)) - f£(h);

for i =2 : N - 1
b(i) = (-u(i-1) + 2 * u(i) - u(i + 1)) * coeff + (1 + i * h)

* u(i) + i * h * exp(u(i)) - £(i * h);

end

b(N) = (-u(N-1) + 2 x u(N)) * coeff + (1 + N * h) * u(N) + N =*
h * exp(u(N)) - £(N * h);
A
% decomposition de cholesky A = LL-T
YA
a(l) = sqrt(a(l));
for i =1 : N - 1

c(i) = c(i) / a(di);
a(i+1) = sqgrt(a(i+1) - c(i) * c(i));

end
YA
% resolution du systeme lineaire Lz = b */
YA
b(1) = b(1) / a(l);
for i=1:N-1

b(i+1) = (b(i+1) - c(i) * b(i)) / a(i+1);
end
A
% resolution du systeme lineaire L°T y = z */
%
b(N) = b(N) / a(N);

for i =N -1 : -1 : 1
b(i) = (b(i) - c(i) * b(i+1)) / a(i);
end
%
% poser u~{n+1} = u"n - y, imprimer la norme euclidienne de y et 1

’erreur max.

)



67 norm2 = 0;

68 err = 0;

69 for i=1:N

70 u(i) = u(i) - b(i);

71 norm2 =norm2 + b(i) * b(i);

72 erri = abs(u(i) - uex(i * h));

73 if (erri > err)

74 err = erri;

75 end

76 end

77

78 fprintf (’ iteration %d norm2 %e err %e \n’,n,norm2,err)
79 end

80 end

3.d) On constate, pour N = 15 par exemple, que la méthode de Newton converge aprés
5 itérations (norm2 = 1.459428e — 32); lerreur maxi<;<n |u(z;) — u;| vaut alors
5.551115e — 17. On a bien u(z;) = u; & 16 décimales preés.

3.e) Le tableau suivant représente l'erreur maxj<;<n |u(z;) —w;| pour plusieurs valeurs de

h:

N+1 h Erreur
4 0.25  2.200004e-01
8 0.125  5.055203e-02
16 0.0625 1.237587e-02

On note que l'erreur est approximativement divisée par 4 & chaque fois que h est
divisé par 2.



	
	
	

