
Ecole Polytechnique Fédérale de Lausanne Alexandre Caboussat
Analyse numérique (GM) / MATH-251(e) Printemps 2025

Corrigé 8

Exercice 1

Notons xj+1/2 = (j + 1/2)h, j = 0, 1, ..., N . L’approximation de la dérivée première d’une
fonction v au point xi par une formule de différences finies centrées est :

v′(xi) '
v(xi+1/2)− v(xi−1/2)

h
.

Par conséquent, en posant v(x) = (2 + sin(x))u′(x), on a

d

dx

(
(2 + sin(xi))u

′(xi)
)
'
(2 + sin(xi+1/2))u

′(xi+1/2)− (2 + sin(xi−1/2))u
′(xi−1/2)

h

'
(2 + sin(xi+1/2))(u(xi+1)− u(xi))− (2 + sin(xi−1/2))(u(xi)− u(xi−1))

h2
.

Un schéma basé sur des différences centrées pour le problème donné revient à chercher les
ui, i = 1, ..., N tels que−

1

h2
(
(2 + sin(xi+1/2))(ui+1 − ui)− (2 + sin(xi−1/2))(ui − ui−1)

)
= f(xi), i = 1, ..., N,

u0 = uN+1 = 0.

Ce problème peut s’écrire sous la forme du système linéaire de taille N donné par :

1

h2



4 + sin(x1/2) + sin(x3/2) −2− sin(x3/2)

−2− sin(x3/2)
. . .

. . . −2− sin(xN−1/2)

−2− sin(xN−1/2) 4 + sin(xN−1/2) + sin(xN+1/2)





u1

u2

...

uN−1

uN


=



f(x1)

f(x2)

...

f(xN−1)

f(xN)


.

Remarque : Une mauvaise méthode consiste à écrire l’équation sous la forme ((2 +
sin(x))u′)′ = (2 + sin(x))u′′ + cos(x)u′, puis appliquer la méthode des différences finies.
En effet, en procédant de cette manière on obtient une matrice qui n’a pas la propriété de
symétrie de la matrice ci-dessus.

Exercice 2

En utilisant la formule de différences finies centrées vue au cours pour l’approximation de
u′′(x) et u′(x), le schéma peut s’écrire :

−ui−1 + 2ui − ui+1

h2
= f(xi), i = 1, ..., N + 1,

u0 = 0,

uN+1 +
uN+2 − uN

2h
= 5.

Remarque : Ce problème comporte N + 1 inconnues, u1, . . . , uN+1.

En éliminant l’inconnue uN+2, ce schéma peut s’écrire sous la forme d’un système linéaire
de taille N + 1 donné par :

1

h2



2 −1
−1 2 −1

−1
. −1

−1 2 −1
−1 1 + h





u1
u2
...
...
uN
uN+1


=



f(x1)
f(x2)

...

...
f(xN)

1
2f(xN+1) +

5h
h2


.

Remarque : La dernière équation du système a été divisée par 2 afin d’obtenir une matrice
symétrique.

Exercice 3

3.a) On utilise la formule de différences finies centrées pour approcher u′′(x):

u′′(x) '
δ2hu(x)

h2
=
u(x− h)− 2u(x) + u(x+ h)

h2
.

Considérons le N -vecteur ~u = (uj)
N
j=1, où les uj ' u(xj), j = 1, 2, ..., N . Posons

u0 = 0 et uN+1 = 0. Le système d’équations pour discrétiser le problème est le
suivant:

−uj−1 + 2uj − uj+1

h2
+ (1 + xj)uj + xje

uj = f(xj), j = 1, 2, ..., N,

u0 = uN+1 = 0.

Ce problème est donc équivalent à chercher le vecteur ~u ∈ RN tel que ~F (~u) = ~0, où
la fonction ~F est définie par :

~F : ~v =


v1
v2
...
vN

 ∈ RN 7→ ~F (~v) =


F1(v1, . . . , vN)
F2(v1, . . . , vN)

...
FN (v1, . . . , vN)

 ∈ RN ,

2

avec
F1(~v) =

2v1 − v2
h2

+ (1 + x1)v1 + x1e
v1 − f(x1),

Fj(~v) =
−vj−1 + 2vj − vj+1

h2
+ (1 + xj)vj + xje

vj − f(xj), j = 2, ..., N − 1,

FN (~v) =
−vN−1 + 2vN

h2
+ (1 + xN)evN − f(xN).

3.b) La matrice jacobienne est définie par :

D~F (~v) =



a1 c1
c1 a2 c2

c2 a3
. . . 0

.
.

0 . . . aN−1 cN−1
cN−1 aN


,

avec 
aj =

2

h2
+ (1 + xj) + xje

vj , j = 1, 2, ..., N,

cj = −
1

h2
, j = 1, 2, ..., N − 1.

Pour tout ~v ∈ RN , la matrice D~F (~v) est donc bien symétrique. Elle est définie
positive car ∀~z ∈ RN :

~zTD~F (~v)~z =
1

h2

z21 + z2N +

N−1∑
j=1

(zj − zj+1)
2

+

N∑
j=1

((1 + xj) + xje
vj) z2j > 0,

et ~zTD~F (~v)~z = 0 si et seulement si ~z = 0.

Remarque: On peut également noter que c’est la somme d’une matrice symétrique
définie positive et d’une matrice diagonale à coefficients positifs.

3.c) Comme la matrice jacobienne est symétrique définie positive, la décomposition de
Cholesky A = LLT est toute indiquée pour résoudre le système linéaire à chaque pas.
On complète l’algorithme de la méthode de Newton donné dans le fichier diffinies.m
de la manière suivante :

1 function [u]= diffinies(N, max_iter = 10)
2 % parametres
3 %
4 % N : nombre d’inconnues du systeme non lineaire
5 % h : pas d’espace
6 % u : N-vecteur , approximation de la solution du probleme

aux limites
7 % a : N-vecteur , diagonale de la matrice jacobienne A,
8 % puis diagonale de L tq A=LL^T
9 % c : (N-1)-vecteur , sous -diagonale de la matrice

jacobienne A,
10 % puis sous -diagonale de L tq A=LL^T
11 % b : N-vecteur , second membre du systeme lineaire A y = b

,

3

12 % puis solution du systeme lineaire A y = b
13 %
14 h = 1 / (N + 1);
15 coeff = (N + 1)^2;
16 %
17 % initialisation : u^0
18 %
19 for i = 1 : N
20 u(i) = 1.;
21 end
22

23 %
24 % algorithme de Newton : DF(u^n) (u^n-u^{n+1}) = F(u^n), c’est -a

-dire
25 % A y = b, puis u^{n+1} = u^n - y
26 %
27 for n = 1 : max_iter
28 %
29 % remplir la matrice jacobienne A = DF(u^n) et le second membre b

= F(u^n)
30 %
31 for i = 1 : N
32 a(i) = 2 * coeff + (1 + i * h) + i * h * exp(u(i));
33 end
34 for i=1:N-1
35 c(i) = -1 * coeff;
36 end
37 b(1) = (2 * u(1) - u(2)) * coeff + (1 + h) * u(1) + h * exp(u

(1)) - f(h);
38 for i = 2 : N - 1
39 b(i) = (-u(i-1) + 2 * u(i) - u(i + 1)) * coeff + (1 + i * h)

* u(i) + i * h * exp(u(i)) - f(i * h);
40 end
41 b(N) = (-u(N-1) + 2 * u(N)) * coeff + (1 + N * h) * u(N) + N *

h * exp(u(N)) - f(N * h);
42 %
43 % decomposition de cholesky A = LL^T
44 %
45 a(1) = sqrt(a(1));
46 for i = 1 : N - 1
47 c(i) = c(i) / a(i);
48 a(i+1) = sqrt(a(i+1) - c(i) * c(i));
49 end
50 %
51 % resolution du systeme lineaire Lz = b */
52 %
53 b(1) = b(1) / a(1);
54 for i=1:N-1
55 b(i+1) = (b(i+1) - c(i) * b(i)) / a(i+1);
56 end
57 %
58 % resolution du systeme lineaire L^T y = z */
59 %
60 b(N) = b(N) / a(N);
61 for i = N - 1 : -1 : 1
62 b(i) = (b(i) - c(i) * b(i+1)) / a(i);
63 end
64 %
65 % poser u^{n+1} = u^n - y, imprimer la norme euclidienne de y et l

’erreur max.
66 %

4

67 norm2 = 0;
68 err = 0;
69 for i=1:N
70 u(i) = u(i) - b(i);
71 norm2 =norm2 + b(i) * b(i);
72 erri = abs(u(i) - uex(i * h));
73 if (erri > err)
74 err = erri;
75 end
76 end
77

78 fprintf(’ iteration %d norm2 %e err %e \n’,n,norm2 ,err)
79 end
80 end

3.d) On constate, pour N = 15 par exemple, que la méthode de Newton converge après
5 itérations (norm2 = 1.459428e − 32); l’erreur max1≤i≤N |u(xi) − ui| vaut alors
5.551115e− 17. On a bien u(xi) = ui à 16 décimales près.

3.e) Le tableau suivant représente l’erreur max1≤i≤N |u(xi)−ui| pour plusieurs valeurs de
h:

N + 1 h Erreur
4 0.25 2.200004e-01
8 0.125 5.055203e-02
16 0.0625 1.237587e-02

On note que l’erreur est approximativement divisée par 4 à chaque fois que h est
divisé par 2.

5

	
	
	

